18. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)二次函數(shù)的圖象經(jīng)過三點(diǎn).

(1)求函數(shù)的解析式(2)求函數(shù)在區(qū)間上的最大值和最小值

查看答案和解析>>

(本小題滿分12分)已知等比數(shù)列{an}中, 

   (Ⅰ)求數(shù)列{an}的通項(xiàng)公式an;

   (Ⅱ)設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,證明:

   (Ⅲ)設(shè),證明:對(duì)任意的正整數(shù)n、m,均有

查看答案和解析>>

(本小題滿分12分)已知函數(shù),其中a為常數(shù).

   (Ⅰ)若當(dāng)恒成立,求a的取值范圍;

   (Ⅱ)求的單調(diào)區(qū)間.

查看答案和解析>>

(本小題滿分12分)

甲、乙兩籃球運(yùn)動(dòng)員進(jìn)行定點(diǎn)投籃,每人各投4個(gè)球,甲投籃命中的概率為,乙投籃命中的概率為

   (Ⅰ)求甲至多命中2個(gè)且乙至少命中2個(gè)的概率;

   (Ⅱ)若規(guī)定每投籃一次命中得3分,未命中得-1分,求乙所得分?jǐn)?shù)η的概率分布和數(shù)學(xué)期望.

查看答案和解析>>

(本小題滿分12分)已知是橢圓的兩個(gè)焦點(diǎn),O為坐標(biāo)原點(diǎn),點(diǎn)在橢圓上,且,圓O是以為直徑的圓,直線與圓O相切,并且與橢圓交于不同的兩點(diǎn)A、B.

   (1)求橢圓的標(biāo)準(zhǔn)方程;w.w.w.k.s.5.u.c.o.m        

   (2)當(dāng)時(shí),求弦長(zhǎng)|AB|的取值范圍.

查看答案和解析>>

一、選擇題:(每題5分,共60分)

20080416

二、填空題:每題5分,共20分)

13.[-5,7]; 14.();   15.(1,2)(2,3);    16.②③④

17.解:(1),

.又.(6分)

   (2)由,

,.(6分)

18.證明:(1)因?yàn)樵谡叫蜛BCD中,AC=2

<tfoot id="hrigg"><source id="hrigg"></source></tfoot>

    <tt id="hrigg"><acronym id="hrigg"><dfn id="hrigg"></dfn></acronym></tt>

    可得:在△PAB中,PA2+AB2=PB2=6。

    所以PA⊥AB

    同理可證PA⊥AD

    故PA⊥平面ABCD (4分)

       (2)取PE中點(diǎn)M,連接FM,BM,

    連接BD交AC于O,連接OE

    ∵F,M分別是PC,PF的中點(diǎn),

    ∴FM∥CE,

    又FM面AEC,CE面AEC

    ∴FM∥面AEC

    又E是DM的中點(diǎn)

    OE∥BM,OE面AEC,BM面AEC

    ∴BM∥面AEC且BM∩FM=M

    ∴平面BFM∥平面ACE

    又BF平面BFM,∴BF∥平面ACE (4分)

       (3)連接FO,則FO∥PA,因?yàn)镻A⊥平面ABCD,則FO⊥平面ABCD,所以FO=1,

    SㄓACD=1,

        ∴VFACD=VF――ACD=  (4分)

    19. (1)由已知圓的標(biāo)準(zhǔn)方程為:(x-aCosφ)2+(y-aSinφ)2=a2(a>0)

    設(shè)圓的圓心坐標(biāo)為(x,y),則(為參數(shù)),

    消參數(shù)得圓心的軌跡方程為:x2+y2=a2,…………(5分)

       (2)有方程組得公共弦的方程:

    圓X2+Y2=a2的圓心到公共弦的距離d=,(定值)

    ∴弦長(zhǎng)l=(定值)               (5分)

    20.解:(1),

    當(dāng)時(shí),取最小值

    .(6分)

       (2)令,

    (不合題意,舍去).

    當(dāng)變化時(shí)的變化情況如下表:

    遞增

    極大值

    遞減

    內(nèi)有最大值

    內(nèi)恒成立等價(jià)于內(nèi)恒成立,

    即等價(jià)于

    所以的取值范圍為.(6分)

    21.解:(1),

    ,

    數(shù)列是首項(xiàng)為,公比為的等比數(shù)列,

    當(dāng)時(shí),,

         (6分)

       (2),

    當(dāng)時(shí),;

    當(dāng)時(shí),,…………①

    ,………………………②

    得:

    也滿足上式,

    .(6分)

    22.解:(1)由題意橢圓的離心率

            

    ∴橢圓方程為……2分

    又點(diǎn)在橢圓上

             ∴橢圓的方程為(4分)

    (2)設(shè)

    消去并整理得……6分

    ∵直線與橢圓有兩個(gè)交點(diǎn)

    ,即……8分

    中點(diǎn)的坐標(biāo)為……10分

    設(shè)的垂直平分線方程:

    ……12分

    將上式代入得

       即 

    的取值范圍為…………(8分)

     

     

     


    同步練習(xí)冊(cè)答案