9.已知直線x+y=a與圓x2+y2=4交于A.B兩點.且.其中O為坐標(biāo)原點.則實數(shù)a的值為 查看更多

 

題目列表(包括答案和解析)

已知直線x+y=a與圓x2+y2=4交于A、B兩點,且|
OA
+
OB
|=|
OA
-
OB
|,其中O為原點,則實數(shù)a的值為(  )
A、2
B、-2
C、2或-2
D、
6
或-
6

查看答案和解析>>

已知直線x+y=a與圓x2+y2=4交于A、B兩點,O是坐標(biāo)原點,向量
OA
、
OB
滿足|
OA
+
OB
|=|
OA
-
OB
|
,則實數(shù)a的
 

查看答案和解析>>

已知直線x+y=a與圓x2+y2=4交于A、B兩不同點,O是坐標(biāo)原點,向量
OA
OB
滿足
OA
OB
=0,則實數(shù)a的值是(  )
A、2
B、±2
C、±
6
D、-2

查看答案和解析>>

已知直線x+y=a與圓x2+y2=4交于A、B兩點,O是坐標(biāo)原點,向量
OA
OB
滿足|
OA
+
OB
|=|
OA
-
OB|
,則實數(shù)a的值( 。
A、2
B、-2
C、
6
或-
6
D、2或-2

查看答案和解析>>

已知直線x+y=a與圓x2+y2=4交于A、B兩點,且
OA
OB
=2
(其中O為原點),則實數(shù)a等于( 。
A、±
6
B、±(
3
+1)
C、±2
D、±
2

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DADC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

      1.        P(0,0,a),F,).………………2分

           (I)

               …………………………………………4分

        文本框:     (II)設(shè)平面DEF的法向量為

               得

               取x=1,則y=-2,z=1.

               ………………………………………………6分

              

               設(shè)DB與平面DEF所成角為……………………………………8分

           (III)假設(shè)存在點G滿足題意

               因為

              

               ∴存在點G,其坐標(biāo)為(,0,0),即G點為AD的中點.……………………12分

        19.(本小題滿分12分)

               解:(I)ξ的所有可能取值為0,1,2,依題意得:

               …………3分

               ∴ξ的分布列為

              

        ξ

        0

        1

        2

        P

               ∴Eξ=0×+1×+2×=1.…………………………………………4分

           (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

               ∴所求概率為…………………………………8分

           (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

               ………………………………10分

               ……………12分

        20.(本小題滿分12分)

               解:(I)由題意知

               是等差數(shù)列.…………………………………………2分

              

               ………………………………5分

           (II)由題設(shè)知

              

               是等差數(shù)列.…………………………………………………………8分

              

               ………………………………10分

               ∴當(dāng)n=1時,

               當(dāng)

               經(jīng)驗證n=1時也適合上式. …………………………12分

        21.(本小題滿分12分)

               解:(I)令

               則

               是單調(diào)遞減函數(shù).……………………………………2分

               又取

               在其定義域上有唯一實根.……………………………4分

           (II)由(I)知方程有實根(或者由,易知x=0就是方程的一個根),滿足條件①.………………………………………………5分

              

               滿足條件②.故是集合M中的元素.……………………………7分

           (III)不妨設(shè)在其定義域上是增函數(shù).

               ………………………………………………………………8分

               是其定義域上的減函數(shù).

               .………………10分

              

               …………………………………………12分

        22.(本小題滿分14分)

               解:(I)設(shè)

               由

               ………………………………………………2分

               又

              

               同理,由………………………………4分

               …………6分

           (II)方法一:當(dāng)m=0時,A(2,2),B(2,-),Dn,2),En,-2).

               ∵ABED為矩形,∴直線AE、BD的交點N的坐標(biāo)為(………………8分

               當(dāng)

              

               同理,對、進行類似計算也得(*)式.………………………………12分

               即n=-2時,N為定點(0,0).

               反之,當(dāng)N為定點,則由(*)式等于0,得n=-2.…………………………14分

               方法二:首先n=-2時,則D(-2,y1),A

                 ①

                 ②…………………………………………8分

               ①-②得

              

               …………………………………………………………10分

               反之,若N為定點N(0,0),設(shè)此時

               則

               由D、N、B三點共線,   ③

               同理E、NA三點共線, ④………………12分

               ③+④得

               即-16m+8m4m=0,m(n+2)=0.

               故對任意的m都有n=-2.……………………………………………………14分

         

         

         


        同步練習(xí)冊答案

        <del id="rbyqi"><menu id="rbyqi"></menu></del>