中的函數(shù)是否為集合M的元素, 查看更多

 

題目列表(包括答案和解析)

若函數(shù)在定義域內(nèi)存在區(qū)間,滿足上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911405226518211/SYS201207091141332182286905_ST.files/image002.png">,則稱這樣的函數(shù)為“優(yōu)美函數(shù)”.

(Ⅰ)判斷函數(shù)是否為“優(yōu)美函數(shù)”?若是,求出;若不是,說明理由;

(Ⅱ)若函數(shù)為“優(yōu)美函數(shù)”,求實(shí)數(shù)的取值范圍.

【解析】第一問中,利用定義,判定由題意得,由,所以

第二問中, 由題意得方程有兩實(shí)根

設(shè)所以關(guān)于m的方程有兩實(shí)根,

即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn),從而得到t的范圍。

解(I)由題意得,由,所以     (6分)

(II)由題意得方程有兩實(shí)根

設(shè)所以關(guān)于m的方程有兩實(shí)根,

即函數(shù)與函數(shù)的圖像在上有兩個(gè)不同交點(diǎn)。

 

查看答案和解析>>

已知函數(shù)f(x)=x2+(a-2)x-alnx,其中常數(shù)a≠0.
(I)若x=3是函數(shù)y=f(x)極值點(diǎn),求a的值;
(II)當(dāng)a=-2時(shí),給出兩組直線:6x+y+m=0,x-y+n=0,其中m,n為常數(shù),判斷這兩組直線中是否存在y=f(x)的切線,若存在,求出切線方程;若不存在,請(qǐng)說明理由.
(III)是否存在正實(shí)數(shù)a,使得關(guān)于x的方程f(x)=(3a-2)x+alnx有唯一實(shí)數(shù)解?若存在,求a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

已知函數(shù)f(x)=x2+(a-2)x-alnx,其中常數(shù)a≠0.
(I)若x=3是函數(shù)y=f(x)極值點(diǎn),求a的值;
(II)當(dāng)a=-2時(shí),給出兩組直線:6x+y+m=0,x-y+n=0,其中m,n為常數(shù),判斷這兩組直線中是否存在y=f(x)的切線,若存在,求出切線方程;若不存在,請(qǐng)說明理由.
(III)是否存在正實(shí)數(shù)a,使得關(guān)于x的方程f(x)=(3a-2)x+alnx有唯一實(shí)數(shù)解?若存在,求a的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

己知函數(shù)f(x)=數(shù)學(xué)公式-1(其中a是不為0的實(shí)數(shù)),g(x)=lnx,設(shè)F(x)=f(x)+g(x).
(I )判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
(II)已知s,t為正實(shí)數(shù),求證:ttex≥stet(其中e為自然對(duì)數(shù)的底數(shù));
(III)是否存在實(shí)數(shù)m,使得函數(shù)y=f(數(shù)學(xué)公式)+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

己知函數(shù)f(x)=-1(其中a是不為0的實(shí)數(shù)),g(x)=lnx,設(shè)F(x)=f(x)+g(x).
(I )判斷函數(shù)F(x)在(0,3]上的單調(diào)性;
(II)已知s,t為正實(shí)數(shù),求證:ttex≥stet(其中e為自然對(duì)數(shù)的底數(shù));
(III)是否存在實(shí)數(shù)m,使得函數(shù)y=f()+2m的圖象與函數(shù)y=g(x2+1)的圖象恰好有四個(gè)不同的交點(diǎn)?若存在,求出m的取值范圍,若不存在,說明理由.

查看答案和解析>>

一、選擇題:本大題共12小題,每小題5分,共60分.

1―5CADAD   6―10BACBC   11―12BD

二、填空題:本大題共4個(gè)小題,每小題4分,共16分.

13.  14.  15. 16.③④

三、解答題:本大題共6小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟.

17.(本小題滿分12分)

       解:(I)由題意知……………………1分

      

       ………………………………………………………6分

      

       ………………………………………………8分

   (II)

       …………………………10分

      

       最大,其最大值為3.………………12分

18.(本小題滿分12分)

       解:以DA,DC,DP所在直線分別為x軸,y軸,z軸建立空間直角坐標(biāo)系(如圖).

    • <menuitem id="eeftk"><fieldset id="eeftk"></fieldset></menuitem>
        • <s id="eeftk"><strong id="eeftk"></strong></s>
          • <menuitem id="eeftk"><fieldset id="eeftk"><object id="eeftk"></object></fieldset></menuitem>

                       P(0,0,a),F,,).………………2分

                   (I)

                       …………………………………………4分

                文本框:     (II)設(shè)平面DEF的法向量為

                       得

                       取x=1,則y=-2,z=1.

                       ………………………………………………6分

                      

                       設(shè)DB與平面DEF所成角為……………………………………8分

                   (III)假設(shè)存在點(diǎn)G滿足題意

                       因?yàn)?sub>

                      

                       ∴存在點(diǎn)G,其坐標(biāo)為(,0,0),即G點(diǎn)為AD的中點(diǎn).……………………12分

                19.(本小題滿分12分)

                       解:(I)ξ的所有可能取值為0,1,2,依題意得:

                       …………3分

                       ∴ξ的分布列為

                      

                ξ

                0

                1

                2

                P

                       ∴Eξ=0×+1×+2×=1.…………………………………………4分

                   (II)設(shè)“甲、乙都不被選中”的事件為C,則……6分

                       ∴所求概率為…………………………………8分

                   (III)記“男生甲被選中”為事件A,“女生乙被選中”為事件B,

                       ………………………………10分

                       ……………12分

                20.(本小題滿分12分)

                       解:(I)由題意知

                       是等差數(shù)列.…………………………………………2分

                      

                       ………………………………5分

                   (II)由題設(shè)知

                      

                       是等差數(shù)列.…………………………………………………………8分

                      

                       ………………………………10分

                       ∴當(dāng)n=1時(shí),

                       當(dāng)

                       經(jīng)驗(yàn)證n=1時(shí)也適合上式. …………………………12分

                21.(本小題滿分12分)

                       解:(I)令

                       則

                       是單調(diào)遞減函數(shù).……………………………………2分

                       又取

                       在其定義域上有唯一實(shí)根.……………………………4分

                   (II)由(I)知方程有實(shí)根(或者由,易知x=0就是方程的一個(gè)根),滿足條件①.………………………………………………5分

                      

                       滿足條件②.故是集合M中的元素.……………………………7分

                   (III)不妨設(shè)在其定義域上是增函數(shù).

                       ………………………………………………………………8分

                       是其定義域上的減函數(shù).

                       .………………10分

                      

                       …………………………………………12分

                22.(本小題滿分14分)

                       解:(I)設(shè)

                       由

                       ………………………………………………2分

                       又

                      

                       同理,由………………………………4分

                       …………6分

                   (II)方法一:當(dāng)m=0時(shí),A(2,2),B(2,-),Dn,2),En,-2).

                       ∵ABED為矩形,∴直線AE、BD的交點(diǎn)N的坐標(biāo)為(………………8分

                       當(dāng)

                      

                       同理,對(duì)進(jìn)行類似計(jì)算也得(*)式.………………………………12分

                       即n=-2時(shí),N為定點(diǎn)(0,0).

                       反之,當(dāng)N為定點(diǎn),則由(*)式等于0,得n=-2.…………………………14分

                       方法二:首先n=-2時(shí),則D(-2,y1),A

                         ①

                         ②…………………………………………8分

                       ①-②得

                      

                       …………………………………………………………10分

                       反之,若N為定點(diǎn)N(0,0),設(shè)此時(shí)

                       則

                       由DN、B三點(diǎn)共線,   ③

                       同理E、N、A三點(diǎn)共線, ④………………12分

                       ③+④得

                       即-16m+8m4m=0,m(n+2)=0.

                       故對(duì)任意的m都有n=-2.……………………………………………………14分

                 

                 

                 


                同步練習(xí)冊(cè)答案