題目列表(包括答案和解析)
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.”
(1)判斷函數(shù)是否是集合M中的元素,并說明理由;
(2)集合M中的元素具有下面的性質(zhì):若的定義域為D,則對于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個實數(shù)根;
(3)設(shè)是方程的實數(shù)根,求證:對于定義域中任意的,當(dāng),且時,.
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足.”
(I)判斷函數(shù)是否是集合M中的元素,并說明理由;
(II)集合M中的元素具有下面的性質(zhì):若的定義域為D,則對于任意
[m,n]D,都存在[m,n],使得等式成立”,
試用這一性質(zhì)證明:方程只有一個實數(shù)根;
(III)設(shè)是方程的實數(shù)根,求證:對于定義域中任意的.
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實數(shù)
根;②函數(shù)”[來源:學(xué)+科+網(wǎng)Z+X+X+K]
(I)判斷函數(shù)是否是集合M中的元素,并說明理由;
(II)集合M中的元素具有下面的性質(zhì):若 的定義域為D,則對于任意
成立。試用這一性
質(zhì)證明:方程只有一個實數(shù)根;
(III)對于M中的函數(shù) 的實數(shù)根,求證:對于定義
域中任意的當(dāng)且
(Ⅰ)判斷函數(shù)f(x)=+是否是集合M中的元素,并說明理由;
(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域為D,則對于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,試用這一性質(zhì)證明:方程f(x)-x=0只有一個實數(shù)根;
(Ⅲ)設(shè)x1是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時,|f(x3)-f(x2)|<2.
(Ⅰ)判斷函數(shù)f(x)=是否是集合M中的元素,并說明理由;
(Ⅱ )集合M中的元素f(x)具有下面的性質(zhì):“若f(x)的定義域為D,則對于任意[m,n]D,都存在x0∈ [m,n],使得等式f(n)-f(m)=(n-m)(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個實數(shù)根;
(Ⅲ)設(shè)x1是方程f(x)-x=0的實數(shù)根,求證:對于f(x)定義域中任意的x2,x3,當(dāng),且時,.
一、選擇題:
l 題號
l
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
l
1、解析:,N=,
即.答案:.
2、解析:由題意得,
又.
答案:.
3、解析:程序的運行結(jié)果是.答案:.
4、解析:與直線垂直的切線的斜率必為4,而,所以,切點為.切線為,即,答案:.
5、解析:由一元二次方程有實根的條件,而,由幾何概率得有實根的概率為.答案:.
6、解析:如果兩條平行直線中的一條垂直于一個平面,那么另一條也垂直于這個平面,所以正確;如果兩個平面與同一條直線垂直,則這兩個平面平行,所以正確;
如果一個平面經(jīng)過了另一個平面的一條垂線,則這兩個平面平行,所以也正確;
只有選項錯誤.答案:.
7、解析:由題意,得,答案:.
8、解析:的圖象先向左平移,橫坐標(biāo)變?yōu)樵瓉淼?sub>倍.答案:.
二、填空題:
l 題號
l
l
l
l
l
l
l
l 答案
l
l
l
l
l
l
l
9、解析:若,則,解得.
10、解析:由題意.
11、解析:
12、解析:令,則,令,則,
令,則,令,則,
令,則,令,則,
…,所以.
13、解析::;則圓心坐標(biāo)為.
:由點到直線的距離公式得圓心到直線的距離為,所以要求的最短距離為.
14、解析:由柯西不等式,答案:.
15、解析:顯然與為相似三角形,又,所以的面積等于9cm.
三、解答題:本大題共6小題,滿分80分.解答須寫出文字說明、證明過程和演算步驟.
16、解: (1), ……………………… 2分
∴,………………………………………………… 4分
解得.………………………………………………………………… 6分
(2)由,得:, ……………………… 8分
∴ ………………………………… 10分
∴.…………………………………………………………… 12分
17、解:(1)… 2分
則的最小正周期, …………………………………4分
且當(dāng)時單調(diào)遞增.
即為的單調(diào)遞增區(qū)間(寫成開區(qū)間不扣分).……6分
(2)當(dāng)時,當(dāng),即時.
所以. …………………………9分
為的對稱軸. …………………12分
18、解:
(1)解法一:“有放回摸兩次,顏色不同”指“先白再黑”或“先黑再白”,
記“有放回摸球兩次,兩球恰好顏色不同”為事件,………………………2分
∵“兩球恰好顏色不同”共種可能,…………………………5分
∴. ……………………………………………………7分
解法二:“有放回摸取”可看作獨立重復(fù)實驗, …………………………2分
∵每次摸出一球得白球的概率為.………………………………5分
∴“有放回摸兩次,顏色不同”的概率為. …………………7分
(2)設(shè)摸得白球的個數(shù)為,依題意得:
,,.
… 10分
∴,……………………………………12分
.……………………14分
19、(1)證明: 連結(jié),與交于點,連結(jié).………………………1分
是菱形, ∴是的中點. ………………………………………2分
點為的中點, ∴. …………………………………3分
平面平面, ∴平面. ……………… 6分
(2)解法一:
平面,平面,∴ .
,∴. …………………………… 7分
是菱形, ∴.
,
∴平面. …………………………………………………………8分
作,垂足為,連接,則,
所以為二面角的平面角. ………………………………… 10分
,∴,.
在Rt△中,=,…………………………… 12分
∴.…………………………… 13分
∴二面角的正切值是. ………………………… 14分
解法二:如圖,以點為坐標(biāo)原點,線段的垂直平分線所在直線為軸,所在直線為軸,所在直線為軸,建立空間直角坐標(biāo)系,令,……………2分
則,,.
∴. ……………4分
設(shè)平面的一個法向量為,
由,得,
令,則,∴. …………………7分
平面,平面,
∴. ………………………………… 8分
,∴.
是菱形,∴.
,∴平面.…………………………… 9分
∴是平面的一個法向量,.………………… 10分
∴,
∴, …………………… 12分
∴.…………………………………… 13分
∴二面角的正切值是. ……………………… 14分
20、解:圓的方程為,則其直徑長,圓心為,設(shè)的方程為,即,代入拋物線方程得:,設(shè),
有, ………………………………2分
則. ……………………4分
故 …6分
, ………… 7分
因此. ………………………………… 8分
據(jù)等差,, …………… 10分
所以,即,,…………… 12分
即:方程為或. …………………14分
21、解:
(1)因為, …………………………2分
所以,滿足條件. …………………3分
又因為當(dāng)時,,所以方程有實數(shù)根.
所以函數(shù)是集合M中的元素. …………………………4分
(2)假設(shè)方程存在兩個實數(shù)根
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com