題目列表(包括答案和解析)
(本小題滿分14分)
已知函數(shù)。
(1)證明:
(2)若數(shù)列的通項公式為,求數(shù)列 的前項和;w.w.w.k.s.5.u.c.o.m
(3)設數(shù)列滿足:,設,
若(2)中的滿足對任意不小于2的正整數(shù),恒成立,
試求的最大值。
(本小題滿分14分)已知,點在軸上,點在軸的正半軸,點在直線上,且滿足,. w.w.w.k.s.5.u.c.o.m
(Ⅰ)當點在軸上移動時,求動點的軌跡方程;
(Ⅱ)過的直線與軌跡交于、兩點,又過、作軌跡的切線、,當,求直線的方程.(本小題滿分14分)設函數(shù)
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若當時,不等式恒成立,求實數(shù)的取值范圍;w.w.w.k.s.5.u.c.o.m
(3)若關于的方程在區(qū)間上恰好有兩個相異的實根,求實數(shù)的取值范圍。(本小題滿分14分)
已知,其中是自然常數(shù),
(1)討論時, 的單調(diào)性、極值;w.w.w.k.s.5.u.c.o.m
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù),使的最小值是3,若存在,求出的值;若不存在,說明理由.
(本小題滿分14分)
設數(shù)列的前項和為,對任意的正整數(shù),都有成立,記。
(I)求數(shù)列的通項公式;
(II)記,設數(shù)列的前項和為,求證:對任意正整數(shù)都有;
(III)設數(shù)列的前項和為。已知正實數(shù)滿足:對任意正整數(shù)恒成立,求的最小值。
一、選擇題:
1
2
3
4
5
6
7
8
9
10
A
D
A
D
B
C
A
C
B
A
二、填空題:
11. 12. 13. 14. 15.64
16.設是三棱錐四個面上的高為三棱錐內(nèi)任一點,到相應四個面的距離分別為我們可以得到結(jié)論:
17.
三、解答題:
18.解:(1)由圖像知 , ,,又圖象經(jīng)過點(-1,0)
(2)
,
當即時,的最大值為,當,
即時, 最小值為
19.(1)由幾何體的正視圖、側(cè)視圖、俯視圖的面積總和為8得取中點,聯(lián)結(jié),分別是的中點,,,E、F、F、G四點共面
又平面,平面
(2)就是二面角的平面角
在中,,
,即二面角的大小為
解法二:建立如圖所示空間直角坐標系,設平面
的一個法向量為
則
取,又平面的法向量為(1,0,0)
(3)設則
又平面點是線段的中點
20.解(1)由題意可知
又
(2)兩類情況:共擊中3次概率
共擊中4次概率
所求概率為
(3)設事件分別表示甲、乙能擊中,互相獨立。
為所 求概率
21.解(1)設過拋物線的焦點的直線方程為或(斜率不存在),則 得,
當(斜率不存在)時,則
又 ,所求拋物線方程為
(2)設
由已知直線的斜率分別記為:,得
22.解:(I)依題意知:直線是函數(shù)在點(1,0)處的切線,故其斜率所以直線的方程為
又因為直線與的圖像相切 所以由
得
(Ⅱ)因為所以
當時, 當時,
因此,在上單調(diào)遞增,在上單調(diào)遞減。
因此,當時,取得最大值
(Ⅲ)當時,,由(Ⅱ)知:當時,,即因此,有即
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com