若.則∥, 若∥且∥則.其中正確的命題個(gè)數(shù)是( ) 查看更多

 

題目列表(包括答案和解析)

向量的命題:①若非零向量
a
=(x , y)
,向量
b
=(-y , x)
,則
a
b
;②四邊形ABCD是菱形的充要條件是
AB
=
DC
|
AB
|=|
AD
|
;③若點(diǎn)G是△ABC的重心,則
GA
+
GB
+
CG
=0
④△ABC中,
AB
CA
的夾角為180°-A,其中正確的命題序號(hào)是
①②④
①②④

查看答案和解析>>

向量的命題:①若非零向量
a
=(x , y)
,向量
b
=(-y , x)
,則
a
b
;②四邊形ABCD是菱形的充要條件是
AB
=
DC
|
AB
|=|
AD
|
;③若點(diǎn)G是△ABC的重心,則
GA
+
GB
+
CG
=0
④△ABC中,
AB
CA
的夾角為180°-A,其中正確的命題序號(hào)是______.

查看答案和解析>>

向量的命題:①若非零向量,向量,則;②四邊形ABCD是菱形的充要條件是;③若點(diǎn)G是△ABC的重心,則④△ABC中,的夾角為180°-A,其中正確的命題序號(hào)是   

查看答案和解析>>

已知命題①:函數(shù)y=2x-2-x為奇函數(shù);命題②:函數(shù)y=x-
1x
在其定義域上是增函數(shù);命題③:“a,b∈R,若ab=0,則a=0且b=0”的逆命題;命題④:已知a,b∈R,“a>b”是“a2>b2”成立的充分不必要條件.上述命題中,真命題的序號(hào)有
 
.(請(qǐng)把你認(rèn)為正確命題的序號(hào)都填上)

查看答案和解析>>

下列命題中:
①若a,b,m都是正數(shù),且
a+m
b+m
a
b
,則b>a;      
②已知a,b都為實(shí)數(shù),若|a+b|<|a|+|b|,則ab<0;       
 ③若a,b,c為△ABC的三條邊,則a2+b2+c2>2(ab+bc+ca);
④若a>b>c,則
1
a-b
+
1
b-c
+
1
c-a
>0.
其中正確命題的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

 

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

C

C

A

A

A

D

B

C

C

B

C

B

 

 

13.    14. 2    15.    16. ①②③

 

17. 解:(1)由得:,             2分

即b = c = 1-a,        4分

當(dāng)時(shí),

  因?yàn)?sub>,有1-a > 0,,得a = -1

 故                      8分

(2)∵是奇函數(shù),且將的圖象先向右平移個(gè)單位,再向上平移1個(gè)單位,可以得到的圖象,∴是滿(mǎn)足條件的一個(gè)平移向量.        12分

18. 解:(1)由等可能事件的概率意義及概率計(jì)算公式得;   5分

 (2)設(shè)選取的5只福娃恰好距離組成完整“奧運(yùn)會(huì)吉祥物”差兩種福娃記為事件B,

依題意可知,至少差兩種福娃,只能是差兩種福娃,則

6ec8aac122bd4f6e        11分

故選取的5只福娃距離組成完整“奧運(yùn)會(huì)吉祥物”至少差兩種福娃的概率為  12分

 

19.     解:(1)

又平面平面

………………4分

(2)

∴點(diǎn)到平面的距離即求點(diǎn)到平面的距離

   取中點(diǎn),連結(jié)

為等邊三角形

                                                               

又由(1)知

  ∴點(diǎn)到平面的距離即點(diǎn)到平面的距離為………………8分

   (3)二面角即二面角

   過(guò),垂足為點(diǎn),連結(jié)

由(2)及三垂線定理知

為二面角的平面角

  

   …12分

解法2:(1)如圖,取中點(diǎn),連結(jié)

為等邊三角形

又∵平面平面   

建立空間直角坐標(biāo)系,則有

,

………………4分

(2)設(shè)平面的一個(gè)法向量為

∴點(diǎn)到平面的距離即求點(diǎn)到平面的距離

………………………………8分

(3)平面的一個(gè)法向量為

設(shè)平面的一個(gè)法向量為

,

∴二面角的大小為…………………………………12分

 

 

20. 解:(1)由題意知

當(dāng)n=1時(shí),

當(dāng)

兩式相減得

整理得:)       ………………………………………………(4分)

∴數(shù)列{an}是為首項(xiàng),2為公比的等比數(shù)列.

            ……………………………………(5分)

(2)

           …………………………………………………………(6分)

     …… ①

     …… ②

①-②得         ……………(9分)

                   ………………………(11分)

          ………………………………………………………(12分)

 

21. 解:(1)由,∴ 

設(shè),則,  

   

同理,有,∴為方程的兩根

. 設(shè),則     ①

  ②

由①、②消去得點(diǎn)的軌跡方程為.   ………………………………6分

(2)

∴當(dāng)時(shí),.        ………………………………12分

 

 

22. 解:(1)

………………………………………………………………………2分

的單調(diào)遞增區(qū)間為,,單調(diào)遞減區(qū)間為…………5分

(2)由題

……………………6分

……………………………………………7分

當(dāng)時(shí)

 

 

 

 

 

 

 

 

 

此時(shí),,,有一個(gè)交點(diǎn);…………………………9分

當(dāng)時(shí),

   

  

 

 

  

,

∴當(dāng)時(shí),有一個(gè)交點(diǎn);

當(dāng)時(shí),有兩個(gè)交點(diǎn);

      當(dāng)時(shí),,有一個(gè)交點(diǎn).………………………13分

綜上可知,當(dāng)時(shí),有一個(gè)交點(diǎn);

          當(dāng)時(shí),有兩個(gè)交點(diǎn).…………………………………14分

 

 

 


同步練習(xí)冊(cè)答案