題目列表(包括答案和解析)
如圖所示,將一矩形花壇ABCD擴建成一個更大的矩形花園AMPN,要求B在AM上,D在AN上,且對角線MN過C點,|AB|=3米,|AD|=2米,
(I)要使矩形AMPN的面積大于32平方米,則AN的長應(yīng)在什么范圍內(nèi)?
(II)當(dāng)AN的長度是多少時,矩形AMPN的面積最小?并求出最小面積.
(Ⅲ)若AN的長度不少于6米,則當(dāng)AN的長度是多少時,矩形AMPN的面積最?并求出最小面積.
【解析】本題主要考查函數(shù)的應(yīng)用,導(dǎo)數(shù)及均值不等式的應(yīng)用等,考查學(xué)生分析問題和解決問題的能力 第一問要利用相似比得到結(jié)論。
(I)由SAMPN > 32 得 > 32 ,
∵x >2,∴,即(3x-8)(x-8)> 0
∴2<X<8/3,即AN長的取值范圍是(2,8/3)或(8,+)
第二問,
當(dāng)且僅當(dāng)
(3)令
∴當(dāng)x > 4,y′> 0,即函數(shù)y=在(4,+∞)上單調(diào)遞增,∴函數(shù)y=在[6,+∞]上也單調(diào)遞增.
∴當(dāng)x=6時y=取得最小值,即SAMPN取得最小值27(平方米).
一化工廠明年一月起,若不改善生產(chǎn)環(huán)境按現(xiàn)狀生產(chǎn),每月收入72萬元,同時將受到環(huán)保部門的處罰,第一個月罰3萬元,以后每月增加2萬元. 如果明年一月投資600萬元增加廢物回收凈化設(shè)備(改造設(shè)備時間不計),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本,據(jù)測算設(shè)備投產(chǎn)后每月收入為150萬元,同時該廠不僅不受處罰而且能得到環(huán)保部門一次性100萬元的獎勵,則投資后(從一月算起)第( )個月開始見效(即投資改造后的純收入大于不改造時的純收入)?
A.4 B.5 C.6 D.7
一化工廠明年一月起,若不改善生產(chǎn)環(huán)境按現(xiàn)狀生產(chǎn),每月收入72萬元,同時將受到環(huán)保部門的處罰,第一個月罰3萬元,以后每月增加2萬元. 如果明年一月投資600萬元增加廢物回收凈化設(shè)備(改造設(shè)備時間不計),一方面可以改善環(huán)境,另一方面也可以大大降低原料成本,據(jù)測算設(shè)備投產(chǎn)后每月收入為150萬元,同時該廠不僅不受處罰而且能得到環(huán)保部門一次性100萬元的獎勵,則投資后(從一月算起)第( )個月開始見效(即投資改造后的純收入大于不改造時的純收入)?
A.4 B.5 C.6 D.7
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com