∴N點(diǎn)到AB的距離=AP=1.N點(diǎn)到AP的距離=AF=[點(diǎn)晴]由線線.線面.面面的位置尋找滿足某些條件的點(diǎn)的位置.它能考查學(xué)生分析問題.解決問題的能力.兩種方法各有優(yōu)缺點(diǎn).在向量方法中注意動(dòng)點(diǎn)的設(shè)法.在方法二中注意用分析法尋找思路. 查看更多

 

題目列表(包括答案和解析)

底面ABCD為矩形的四棱錐P-ABCD中,,BC=1,PA=2,側(cè)棱PA⊥底面ABCD,E為PD的中點(diǎn)
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,并求出點(diǎn)N到AB和AP的距離.

查看答案和解析>>

底面ABCD為矩形的四棱錐P-ABCD中,AB=
3
,BC=1,PA=2,側(cè)棱PA⊥底面ABCD,E為PD的中點(diǎn)
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,并求出點(diǎn)N到AB和AP的距離.

查看答案和解析>>

底面ABCD為矩形的四棱錐P-ABCD中,AB=
3
,BC=1,PA=2,側(cè)棱PA⊥底面ABCD,E為PD的中點(diǎn)
(Ⅰ)求直線AC與PB所成角的余弦值;
(Ⅱ)在側(cè)面PAB內(nèi)找一點(diǎn)N,使NE⊥面PAC,并求出點(diǎn)N到AB和AP的距離.

查看答案和解析>>

給出以下5個(gè)命題:
①曲線x2-(y-1)2=1按
a
=(1,-2)
平移可得曲線(x+1)2-(y-3)2=1;
②設(shè)A、B為兩個(gè)定點(diǎn),n為常數(shù),|
PA
|-|
PB
|=n
,則動(dòng)點(diǎn)P的軌跡為雙曲線;
③若橢圓的左、右焦點(diǎn)分別為F1、F2,P是該橢圓上的任意一點(diǎn),延長F1P到點(diǎn)M,使|F2P|=|PM|,則點(diǎn)M的軌跡是圓;
④A、B是平面內(nèi)兩定點(diǎn),平面內(nèi)一動(dòng)點(diǎn)P滿足向量
AB
AP
夾角為銳角θ,且滿足 |
PB
| |
AB
| +
PA
AB
=0
,則點(diǎn)P的軌跡是圓(除去與直線AB的交點(diǎn));
⑤已知正四面體A-BCD,動(dòng)點(diǎn)P在△ABC內(nèi),且點(diǎn)P到平面BCD的距離與點(diǎn)P到點(diǎn)A的距離相等,則動(dòng)點(diǎn)P的軌跡為橢圓的一部分.
其中所有真命題的序號(hào)為
 

查看答案和解析>>

如圖,四棱錐S-ABCD的底面是矩形,AB=a,AD=2,SA=1,且SA⊥底面ABCD,若邊BC上存在異于B,C的一點(diǎn)P,使得
PS
PD

(1)求a的最大值;
(2)當(dāng)a取最大值時(shí),求異面直線AP與SD所成角的大;
(3)當(dāng)a取最大值時(shí),求平面SCD的一個(gè)單位法向量
n
及點(diǎn)P到平面SCD的距離.

查看答案和解析>>


同步練習(xí)冊答案