題目列表(包括答案和解析)
寫出解二元一次方程組的一個(gè)算法:第一步:(2)×2+(1)得:x=2;第二步:_________;第三步:輸出x,y的值。
函數(shù)f(x)= ,求f{f[f(3)]}的算法時(shí),下列步驟正確的順序是 。
(1)由3>0,得f(3)=0
(2)由-5<0,得f(-5)=25+2=27,即f{f[f(3)]}=27
(3)由f(0)=-5,得f[f(3)]=f(0)=-5
【解析】如圖:|OB|=b,|O F1|=c.∴kPQ=,kMN=﹣.
直線PQ為:y=(x+c),兩條漸近線為:y=x.由,得:Q(,);由,得:P(,).∴直線MN為:y-=﹣(x-),
令y=0得:xM=.又∵|MF2|=|F1F2|=2c,∴3c=xM=,解之得:,即e=.
【答案】B
已知函數(shù)f(x)=cos(2x+)+-+sinx·cosx
⑴ 求函數(shù)f(x)的單調(diào)減區(qū)間; ⑵ 若xÎ[0,],求f(x)的最值;
⑶ 若f(a)=,2a是第一象限角,求sin2a的值.
【解析】第一問中,利用f(x)=cos2x-sin2x-cos2x+sin2x=sin2x-cos2x=sin(2x-)令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp
第二問中,∵xÎ[0, ],∴2x-Î[-,],
∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-,
當(dāng)2x-=, 即x=時(shí),f(x)max=1
第三問中,(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=
利用構(gòu)造角得到sin2a=sin[(2a-)+]
解:⑴ f(x)=cos2x-sin2x-cos2x+sin2x ………2分
=sin2x-cos2x=sin(2x-) ……………………3分
⑴ 令+2kp≤2x-≤+2kp,
解得+kp≤x≤+kp ……………………5分
∴ f(x)的減區(qū)間是[+kp,+kp](kÎZ) ……………………6分
⑵ ∵xÎ[0, ],∴2x-Î[-,], ……………………7分
∴當(dāng)2x-=-,即x=0時(shí),f(x)min=-, ……………………8分
當(dāng)2x-=, 即x=時(shí),f(x)max=1 ……………………9分
⑶ f(a)=sin(2a-)=,2a是第一象限角,即2kp<2a<+2kp
∴ 2kp-<2a-<+2kp,∴ cos(2a-)=, ……………………11分
∴ sin2a=sin[(2a-)+]
=sin(2a-)·cos+cos(2a-)·sin ………12分
=×+×=
在平面直角坐標(biāo)系中,曲線與坐標(biāo)軸的交點(diǎn)都在圓上.
(1)求圓的方程;
(2)若圓與直線交于、兩點(diǎn),且,求的值.
【解析】本試題主要是考查了直線與圓的位置關(guān)系的運(yùn)用。
(1)曲線與軸的交點(diǎn)為(0,1),
與軸的交點(diǎn)為(3+2,0),(3-2,0) 故可設(shè)的圓心為(3,t),則有32+(t-1)2=(2)2+t2,解得t=1.
(2)因?yàn)閳A與直線交于、兩點(diǎn),且。聯(lián)立方程組得到結(jié)論。
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com