題目列表(包括答案和解析)
(本題9分)
已知等差數(shù)列﹛an﹜滿足:a3=15, a5+a7=18。
(1)求數(shù)列﹛an﹜的通項(xiàng)an;
(2)設(shè)﹛bn-an﹜是首項(xiàng)為1,公比為3的等比數(shù)列,求數(shù)列﹛bn﹜的通項(xiàng)公式和前n項(xiàng)和Sn。
(本小題9分)等差數(shù)列{an}不是常數(shù)列,a5=10,且a5,a7,a10是某一等比數(shù)列{bn}的第1,2,3項(xiàng),(1)求數(shù)列{an}的第20項(xiàng),(2)求數(shù)列{bn}的通項(xiàng)公式。
(本小題9分)等差數(shù)列{an}不是常數(shù)列,a5=10,且a5,a7,a10是某一等比數(shù)列{bn}的第1,2,3項(xiàng),(1)求數(shù)列{an}的第20項(xiàng),(2)求數(shù)列{bn}的通項(xiàng)公式。
已知函數(shù)f(x)(x∈R)滿足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com