16.曲線上的點到直線l:的最近距離為 西工大附中高2009屆第二次模擬考試 數 學 試 卷 查看更多

 

題目列表(包括答案和解析)

已知雙曲線的中心在原點,以兩條坐標軸為對稱軸,離心率是
2
,兩準線間的距離大于
2
,且雙曲線上動點P到A(2,0)的最近距離為1.
(Ⅰ)求證:該雙曲線的焦點不在y軸上;
(Ⅱ)求雙曲線的方程;
(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若
AM
MB
(λ>0)
,試用l表示k2,并求當λ∈[
1
2
,2]
時,k的取值范圍.

查看答案和解析>>

已知雙曲線的中心在原點,以兩條坐標軸為對稱軸,離心率是,兩準線間的距離大于,且雙曲線上動點P到A(2,0)的最近距離為1。

(Ⅰ)求證:該雙曲線的焦點不在y軸上;

(Ⅱ)求雙曲線的方程;

(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若,試用l表示k2,并求當時,k的取值范圍。

查看答案和解析>>

已知雙曲線的中心在原點,以兩條坐標軸為對稱軸,離心率是,兩準線間的距離大于,且雙曲線上動點P到A(2,0)的最近距離為1.
(Ⅰ)求證:該雙曲線的焦點不在y軸上;
(Ⅱ)求雙曲線的方程;
(Ⅲ)如果斜率為k的直線L過點M(0,3),與該雙曲線交于A、B兩點,若,試用l表示k2,并求當時,k的取值范圍.

查看答案和解析>>

曲線C是中心在原點,焦點在x軸上的雙曲線的右支,已知它的右準線方程為l:x=
1
2
,一條漸近線方程是y=
3
x
,線段PQ是過曲線C右焦點F的一條弦,R是弦PQ的中點.
(1)求曲線C的方程;
(2)當點P在曲線C上運動時,求點R到y(tǒng)軸距離的最小值;
(3)若在直線l的左側能作出直線m:x=a,使點R在直線m上的射影S滿足
PS
QS
=0.當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

曲線C是中心在原點,焦點在x軸上的雙曲線的右支,已知它的右準線方程為l:數學公式,一條漸近線方程是數學公式,線段PQ是過曲線C右焦點F的一條弦,R是弦PQ的中點.
(1)求曲線C的方程;
(2)當點P在曲線C上運動時,求點R到y(tǒng)軸距離的最小值;
(3)若在直線l的左側能作出直線m:x=a,使點R在直線m上的射影S滿足數學公式=0.當點P在曲線C上運動時,求a的取值范圍.

查看答案和解析>>

 

19.解:(1)平面ABC,AB平面ABC,∵AB.

平面,且AB平面,∴

平面.                                     

(2)BC∥,∴或其補角就是異面直線與BC所成的角.

由(1)知又AC=2,∴AB=BC=,∴.

中,由余弦定理知cos

=,即異面直線與BC所成的角的大小為      

 

(3)過點D作于E,連接CE,由三垂線定理知,故是二面角的平面角,

,∴E為的中點,∴,又,由

,在RtCDE中,sin,所以二面角正弦值的大小為   

20.解:(1)因,,故可得直線方程為:

(2),用數學歸納法可證.

(3),,

所以

21.解:(1)∵ 函數是R上的奇函數    ∴    ∴ ,由的任意性知∵ 函數處有極值,又

是關于的方程的根,即

   ∴  ②(4分)由①、②解

 

(2)由(1)知,

列表如下:

 

1

(1,3)

3

 

 

+

0

0

+

 

增函數

極大值1

減函數

極小值

增函數

9

上有最大值9,最小值

∵ 任意的都有,即

的取值范圍是

22.(1)

(2)由

           ①

設C,CD中點為M,則有,

,又A(0,-1)且,

,

(此時)      ②

將②代入①得,即,

綜上可得

 

 


同步練習冊答案