分析:命題:“若斜率為k的直線與橢圓+=1(或雙曲線-=1)相交于A.B的中點(diǎn).則k?kOM=-(或k?kOM=). 在處理有關(guān)圓錐曲線的中點(diǎn)弦問(wèn)題中有著廣泛的應(yīng)用.運(yùn)用這一結(jié)論.不難得到: 查看更多

 

題目列表(包括答案和解析)

已知橢圓
y2
a2
+
x2
b2
=1
的一個(gè)焦點(diǎn)為F(0,2
2
)
,與兩坐標(biāo)軸正半軸分別交于A,B兩點(diǎn)(如圖),向量
AB
與向量
m
=(-1,
2
)
共線.
(1)求橢圓的方程;
(2)若斜率為k的直線過(guò)點(diǎn)C(0,2),且與橢圓交于P,Q兩點(diǎn),求△POC與△QOC面積之比的取值范圍.

查看答案和解析>>

已知點(diǎn)P為圓周x2+y2=4的動(dòng)點(diǎn),過(guò)P點(diǎn)作PH⊥x軸,垂足為H,設(shè)線段PH的中點(diǎn)為E,記點(diǎn)E的軌跡方程為C,點(diǎn)A(0,1)
(1)求動(dòng)點(diǎn)E的軌跡方程C;
(2)若斜率為k的直線l經(jīng)過(guò)點(diǎn)A(0,1)且與曲線C的另一個(gè)交點(diǎn)為B,求△OAB面積的最大值及此時(shí)直線l的方程;
(3)是否存在方向向量
a
=(1,k)(k≠0)
的直線l,使得l與曲線C交與兩個(gè)不同的點(diǎn)M,N,且有|
AM
|=|
AN
|
?若存在,求出k的取值范圍;若不存在,說(shuō)明理由.

查看答案和解析>>

已知?jiǎng)狱c(diǎn)P與雙曲線x2-y2=1的兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為2
3
定值,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)M(0,-1),若斜率為k(k≠0)的直線l與P點(diǎn)的軌跡交于不同的兩點(diǎn)A、B,若要使|MA|=|MB|,試求k的取值范圍.

查看答案和解析>>

若斜率為k的兩條平行直線l,m經(jīng)過(guò)曲線C的端點(diǎn)或與曲線C相切,且曲線C上的所有點(diǎn)都在l,m之間(也可在直線l,m上),則把l,m間的距離稱為曲線C在“k方向上的寬度”,記為d(k).
(1)若曲線C:y=2x2-1(-1≤x≤2),求d(-1);
(2)已知k>2,若曲線C:y=x3-x(-1≤x≤2),求關(guān)于k的函數(shù)關(guān)系式d(k).

查看答案和解析>>

(2009•越秀區(qū)模擬)已知一動(dòng)圓P(圓心為P)經(jīng)過(guò)定點(diǎn)Q(
2
,0),并且與定圓C:(x+
2
)
2
+y2=16
(圓心為C)相切.
(1)求動(dòng)圓圓心P的軌跡方程;
(2)若斜率為k的直線l經(jīng)過(guò)圓x2+y2-2x-2y=0的圓心M,交動(dòng)圓圓心P的軌跡于A、B兩點(diǎn).是否存在常數(shù)k,使得
CA
+
CB
=2
CM
?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案