(Ⅱ)由.得-------------------9分 查看更多

 

題目列表(包括答案和解析)

(9分)

  設數(shù)列的前項和為,,且對任意正整數(shù),點在直線上.

(1) 求數(shù)列的通項公式;

(2)是否存在實數(shù),使得數(shù)列為等差數(shù)列?若存在,求出的值;若不存在,則說明理由.

查看答案和解析>>

(2012•梅州二模)一個社會調(diào)查機構就某社區(qū)居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).
(1)為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,要從這10000人中再用分層抽樣方法抽出100人作進一步調(diào)查,求月收入在[1500,2000)(元)段應抽出的人數(shù);
(2)為了估計該社區(qū)3個居民中恰有2個月收入在[2000,3000)(元)的概率,采用隨機模擬的方法:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),我們用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的數(shù)字表示月收入不在[2000,3000)(元)的居民;再以每三個隨機數(shù)為一組,代表統(tǒng)計的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù)如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
據(jù)此估計,計算該社區(qū)3個居民中恰好有2個月收入在[2000,3000)(元)的概率.
(3)任意抽取該社區(qū)6個居民,用ξ表示月收入在(2000,3000)(元)的人數(shù),求ξ的數(shù)學期望.

查看答案和解析>>

(2012•梅州二模)一個社會調(diào)查機構就某社區(qū)居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).
(1)為了分析居民的收入與年齡、學歷、職業(yè)等方面的關系,要從這10 000人中再用分層抽樣方法抽出100人作進一步調(diào)查,求月收入在[1500,2000)(元)段應抽出的人數(shù);
(2)估計該社區(qū)居民月收人的平均數(shù);
(3)為了估計該社區(qū)3個居民中恰有2個月收入在[2000,3000)(元)的概率,采用隨機模擬的方法:先由計算器算出0到9之間取整數(shù)值的隨機數(shù),我們用0,1,2,3,…表示收入在[2000,3000)(元)的居民,剩余的數(shù)字表示月收入不在[2000,3000)(元)的居民;再以每三個隨機數(shù)為一組,代表統(tǒng)計的結果,經(jīng)隨機模擬產(chǎn)生了20組隨機數(shù)如下:
907  966  191  925  271  932  812  458
569  683  431  257  393  027  556  488
730  113  537  989
據(jù)此估計,計算該社區(qū)3個居民中恰好有2個月收入在[2000,3000)(元)的概率.

查看答案和解析>>

(本題滿分12分)探究函數(shù),的最小值,并確定取得最小值時的值,列表如下:

0.5

1

1.5

1.7

1.9

2

2.1

2.2

2.3

3

4

5

7

8.5

5

4.17

4.05

4.005

4

4.005

4.102

4.24

4.3

5

5.8

7.57

請觀察表中值隨值變化的特點,完成下列問題:

(1) 當時,在區(qū)間上遞減,在區(qū)間       上遞增;

所以,=       時, 取到最小值為         ;

(2) 由此可推斷,當時,有最      值為        ,此時=      ;

(3) 證明: 函數(shù)在區(qū)間上遞減;

(4) 若方程內(nèi)有兩個不相等的實數(shù)根,求實數(shù)的取值范圍。

 

查看答案和解析>>

(本小題滿分10分)把正整數(shù)列按如下規(guī)律排列:

  1,    

  2,3,

  4,5,6,7,

  8,9,10,11,12,13,14,15,

  ……

  問:(I)此表第n行的第一個數(shù)是多少?

     (II)此表第n行的各個數(shù)之和是多少?

是否存在,使得第行起的連續(xù)10行的所有數(shù)之和為?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案