(Ⅱ)∵均為正實(shí)數(shù).∴.當(dāng)時(shí)等號(hào)成立, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)閱讀理解:
①對于任意正實(shí)數(shù)a,b,∵(
a
-
b
)2≥0, ∴a-2
ab
+b≥0
,∴a+b≥2
ab

只有當(dāng)a=b時(shí),等號(hào)成立.
②結(jié)論:在a+b≥2
ab
(a,b均為正實(shí)數(shù))中,若ab為定值p,則a+b≥2
p

只有當(dāng)a=b時(shí),a+b有最小值2
p

(Ⅱ)結(jié)論運(yùn)用:根據(jù)上述內(nèi)容,回答下列問題:(提示:在答題卡上作答)
①若m>0,只有當(dāng)m=
 
時(shí),m+
1
m
有最小值
 

②若m>1,只有當(dāng)m=
 
時(shí),2m+
8
m-1
有最小值
 

(Ⅲ)探索應(yīng)用:
學(xué)校要建一個(gè)面積為392m2的長方形游泳池,并且在四周要修建出寬為2m和4m的小路(如圖).問游泳池的長和寬分別為多少米時(shí),共占地面積最小?并求出占地面積的最小值.
精英家教網(wǎng)

查看答案和解析>>

(1)閱讀理解:①對于任意正實(shí)數(shù),只有當(dāng)時(shí),等號(hào)成立.
②結(jié)論:在均為正實(shí)數(shù))中,若為定值, 則,只有當(dāng)時(shí),有最小值
(2)結(jié)論運(yùn)用:根據(jù)上述內(nèi)容,回答下列問題:(提示:在答題卡上作答)
①若,只有當(dāng)__________時(shí),有最小值__________.
②若,只有當(dāng)__________時(shí),有最小值__________.
(3)探索應(yīng)用:學(xué)校要建一個(gè)面積為392的長方形游泳池,并且在四周要修建出寬為2m和4 m的小路(如圖所示)。問游泳池的長和寬分別為多少米時(shí),共占地面積最小?并求出占地面積的最小值。

查看答案和解析>>

(1)閱讀理解:①對于任意正實(shí)數(shù)只有當(dāng)時(shí),等號(hào)成立.
②結(jié)論:在均為正實(shí)數(shù))中,若為定值, 則,只有當(dāng)時(shí),有最小值
(2)結(jié)論運(yùn)用:根據(jù)上述內(nèi)容,回答下列問題:(提示:在答題卡上作答)
①若,只有當(dāng)__________時(shí),有最小值__________.
②若,只有當(dāng)__________時(shí),有最小值__________.
(3)探索應(yīng)用:學(xué)校要建一個(gè)面積為392的長方形游泳池,并且在四周要修建出寬為2m和4 m的小路(如圖所示)。問游泳池的長和寬分別為多少米時(shí),共占地面積最?并求出占地面積的最小值。

查看答案和解析>>

已知數(shù)列是各項(xiàng)均不為0的等差數(shù)列,公差為d,為其前n項(xiàng)和,且滿足,.?dāng)?shù)列滿足,為數(shù)列的前n項(xiàng)和.

(1)求數(shù)列的通項(xiàng)公式和數(shù)列的前n項(xiàng)和;

(2)若對任意的,不等式恒成立,求實(shí)數(shù)的取值范圍;

(3)是否存在正整數(shù),使得成等比數(shù)列?若存在,求出所有的值;若不存在,請說明理由.

【解析】第一問利用在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足

,

第二問,①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

第三問,

     若成等比數(shù)列,則,

即.

,可得,即,

        .

(1)(法一)在中,令n=1,n=2,

   即      

解得,, [

時(shí),滿足,

,

(2)①當(dāng)n為偶數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.   

 ,等號(hào)在n=2時(shí)取得.

此時(shí) 需滿足.  

②當(dāng)n為奇數(shù)時(shí),要使不等式恒成立,即需不等式恒成立.     

 是隨n的增大而增大, n=1時(shí)取得最小值-6.

此時(shí) 需滿足

綜合①、②可得的取值范圍是

(3),

     若成等比數(shù)列,則,

即.

,可得,即,

,且m>1,所以m=2,此時(shí)n=12.

因此,當(dāng)且僅當(dāng)m=2, n=12時(shí),數(shù)列中的成等比數(shù)列

 

查看答案和解析>>


同步練習(xí)冊答案