查看更多

 

題目列表(包括答案和解析)


x 3 4 5 6
y 2.5 3 4 4.5
(1)請畫出上表數(shù)據(jù)的散點(diǎn)圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=
b
x+
a
;
(3)已知該廠技改前100噸甲產(chǎn)品的生產(chǎn)能耗為90噸標(biāo)準(zhǔn)煤.試根據(jù)(2)求出的線性回歸方程,預(yù)測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技改前降低多少噸標(biāo)準(zhǔn)煤?(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

13、.對一批學(xué)生的抽樣成績的莖葉圖如下:則□表示的原始數(shù)據(jù)為
35

查看答案和解析>>

12、.若函數(shù)f(x)=x2+2(a-1)x+2在(-∞,4)上是減函數(shù),則實(shí)數(shù)a的取值范圍是
a≤-3

查看答案和解析>>

.已知冪函數(shù)f(x)=xk2-2k-3(k∈N*)的圖象關(guān)于y軸對稱,且在區(qū)間(0,+∞)上是減函數(shù),
(1)求函數(shù)f(x)的解析式;
(2)若a>k,比較(lna)0.7與(lna)0.6的大小.

查看答案和解析>>

.在△ABC中,角A、B、C所對的邊分別為a、b、c,且c2=a2+b2-ab.
(Ⅰ)求角C;
(Ⅱ)設(shè)
m
=(sinA,1)
n
=(3,cos2A)
,試求
m
n
的最大值.

查看答案和解析>>

一、選擇題

CDABA  BCBAB

二、填空題

11.     12. -1    13.1<e<2    14.     15.{-1,0}

提示:8.利用點(diǎn)到直線的距離公式知,即在圓內(nèi),也在橢圓內(nèi),所以過點(diǎn)的直線與橢圓總有兩個不同的交點(diǎn).

9.可以轉(zhuǎn)化為求展開式中所有奇數(shù)項(xiàng)系數(shù)之和,賦值即可.

10.原問題有且僅有一個正實(shí)數(shù)解.令,則,令

,由.又時,;,時,.所以.又

;.結(jié)合三次函數(shù)圖像即可.

15.

,即,當(dāng)m為整數(shù)時,值為0,m為小數(shù)時,值為-1,故所求值域?yàn)閧-1,0}

 

三、解答題

16. (1)…………………3分

由條件………………………………………6分

(2),令,解得,又  所以上遞減,在上遞增…………………………13分

 

17.(1)答錯題目的個數(shù)

∴分布列為:,期望(道題)……7分

(2)設(shè)該考生會x道題,不會10-x道題,則…10分

解得:(舍),故該考生最多會3道題…………………………………13分

 

18.(1)作,垂足為,連結(jié),由題設(shè)知,底面

中點(diǎn),由知,,

從而,于是,由三垂線定理知,……………4分

(2)由題意,,所以側(cè)面,又側(cè)面,所以側(cè)面側(cè)面.作,垂足為,連接,則平面.

與平面所成的角,…………………………………7分

,得:, 又,           

因而,所以為等邊三角形.

,垂足為,連結(jié).

由(1)知,,又

平面,

是二面角的平面角………………………………………………...10分

.,,

所以二面角……………………….13分

 

19.(1)由,得,…2分

兩式相減,得:

,

綜上,數(shù)列為首項(xiàng)為1,公比為的等比數(shù)列…………………………..…….6分

(2)由,得,所以是首項(xiàng)為1,,公差為的等差數(shù)列,……………………………….…………………………....9分

……………………….………………………....13分

 

 

20.(1)設(shè)點(diǎn),則

所以,當(dāng)x=p時,…………………………………………………….….4分

(2)由條件,設(shè)直線,代入,得:

設(shè),則,

…......................................................................................7分

….10分

,所以為定值2……………………………………………….12分

21. (1)是奇函數(shù),則恒成立,

,故…………………….2分

(2)上單調(diào)遞減,,,

只需   恒成立.

,則

,而恒成立,.….…………………….7分

 

 

(3)由(1)知,方程為

,, ,

當(dāng)時,,上為增函數(shù);

當(dāng)時,,上為減函數(shù);

當(dāng)時,.而,

函數(shù)、 在同一坐標(biāo)系的大致圖象如圖所示,

當(dāng)時,方程無解;

當(dāng),即時,方程有一個根;

當(dāng),時,方程有兩個根.………………………………….12分

 

 


同步練習(xí)冊答案