20 數(shù)列的人一相鄰兩項(xiàng)的坐標(biāo)的點(diǎn)均在一次函數(shù)的圖像上.數(shù)列滿足條件 查看更多

 

題目列表(包括答案和解析)

(本小題滿分為12分)

數(shù)列 的前n項(xiàng)和為Sn ,且滿足。

(Ⅰ)計(jì)算

(Ⅱ)猜想通項(xiàng)公式,并用數(shù)學(xué)歸納法證明。

 

查看答案和解析>>

(本小題滿分為12分)如圖某河段的兩岸可視為平行,為了測(cè)量該河段的寬度,在河段的一岸邊選取兩點(diǎn),觀察對(duì)岸的點(diǎn),測(cè)得,且米.

(1)求;

(2)求該河段的寬度.

 

查看答案和解析>>

(本小題滿分為12分)

已知函數(shù).

(Ⅰ)求的最小正周期;(Ⅱ)求在區(qū)間上的最大值和最小值.

 

 

查看答案和解析>>

(本小題滿分為12分)已知函數(shù).

(Ⅰ)求的最小正周期;

(Ⅱ)求在區(qū)間上的最大值和最小值.

 

查看答案和解析>>

解答題(本大題共6小題,共75分,解答應(yīng)寫出文字說明,證明過程或演算步驟。)

16.(本小題滿分為12分)

已知函數(shù)

(Ⅰ)設(shè)的極大值點(diǎn),的極小值點(diǎn),求的最小值;

(Ⅱ)若,且,求的值.

 

查看答案和解析>>

2009年曲靖一種高考沖刺卷理科數(shù)學(xué)(一)

一、

1 B 2C 3A 4A 5 A 6 D 7D 8C 9B

10B 11 C 12 A

1依題意得,所以,因此選B

2依題意得。又在第二象限,所以,

,故選C

3

,

因此選A

4 由

因?yàn)?sub>為純虛數(shù)的充要條件為

故選A

5如圖,

故選A

6.設(shè)

故選D

7.設(shè)等差數(shù)列的首項(xiàng)為,公差,因?yàn)?sub>成等比數(shù)列,所以,即,解得,故選D

8.由,所以之比為2,設(shè),,又點(diǎn)在圓上,所以,即+-4,化簡(jiǎn)得=16,故選C

9.長方體的中心即為球心,設(shè)球半徑為,則

于是兩點(diǎn)的球面距離為故選B

10.先分別在同一坐標(biāo)系上畫出函數(shù)的圖象(如圖1)

www.ks5u.com   高考資源網(wǎng)

觀察圖2,顯然,選B

11.依題意,

故選C

12.由題意知,

    ①

代入式①得

由方程的兩根為

故選A。

二、

13.5   14.7    15.22    16.①

13.5.線性規(guī)劃問題先作出可行域,注意本題已是最優(yōu)的特定參數(shù)的特點(diǎn),可考慮特殊的交點(diǎn),再驗(yàn)證,由題設(shè)可知

應(yīng)用運(yùn)動(dòng)變化的觀點(diǎn)驗(yàn)證滿足為所求。

14.7. 由題意得

因此A是鈍角,

15.22,連接,的周章為

16.①當(dāng)時(shí),,取到最小值,因次,是對(duì)稱軸:②當(dāng)時(shí),因此不是對(duì)稱中心;③由,令可得上不是增函數(shù);把函數(shù)的圖象向左平移得到的圖象,得不到的圖象,故真命題序號(hào)是①。

 17.(1)上單調(diào)遞增,上恒成立,即上恒成立,即實(shí)數(shù)的取值范圍

(2)由題設(shè)條件知上單調(diào)遞增。

,即

的解集為

的解集為

18.(1)過連接

側(cè)面

。

是邊長為2的等邊三角形。又點(diǎn),在底面上的射影,

(法一)(2)就是二面角的平面角,都是邊長為2的正三角形,即二面角的大小為45°

(3)取的中點(diǎn)為連接的中點(diǎn),,又,且在平面上,又的中點(diǎn),線段的長就是到平面的距離在等腰直角三角形中,,,,即到平面的距離是

(法二)(2),軸、軸、軸建立空間直角坐標(biāo)系,則點(diǎn)設(shè)平面的法向量為,則,解得,平面的法向量

向量所成角為45°故二面角的大小為45°,

(3)由,的中點(diǎn)設(shè)平面的法向量為,則,解得到平面的距離為

19.(1)取值為0,1,2,3,4

的分布列為

0

1

2

3

4

P

(2)由

所以,當(dāng)時(shí),由

當(dāng)時(shí),由

即為所求‘

20.(1)在一次函數(shù)的圖像上,

于是,且

數(shù)列是以為首項(xiàng),公比為2的等比數(shù)列

(3)      由(1)知

 

21.(1)由題意得:

點(diǎn)Q在以M、N為焦點(diǎn)的橢圓上,即

點(diǎn)Q的軌跡方程為

(2)

設(shè)點(diǎn)O到直線AB的距離為,則

當(dāng)時(shí),等號(hào)成立

當(dāng)時(shí),面積的最大值為3

22.(1)

(2)由題意知

(3)等價(jià)證明

由(1)知

  

 

 


同步練習(xí)冊(cè)答案