21.已知橢圓的上.下焦點分別為.點為坐標(biāo)平面內(nèi)的動點.滿足 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)
已知橢圓的上項點為B1,右、右焦點為F1、F2,是面積為的等邊三角形。
(I)求橢圓C的方程;
(II)已知是以線段F1F2為直徑的圓上一點,且,求過P點與該圓相切的直線的方程;
(III)若直線與橢圓交于A、B兩點,設(shè)的重心分別為G、H,請問原點O在以線段GH為直徑的圓內(nèi)嗎?若在請說明理由。

查看答案和解析>>

(本小題滿分12分)已知橢圓的離心率為,過右焦點F的直線相交于、兩點,當(dāng)的斜率為1時,坐標(biāo)原點的距離為            

  (I)求的值;

  (II)上是否存在點P,使得當(dāng)繞F轉(zhuǎn)到某一位置時,有成立?

若存在,求出所有的P的坐標(biāo)與的方程;若不存在,說明理由。

查看答案和解析>>

(本小題滿分12分)已知橢圓的左、右焦點分別為、,其中也是拋物線的焦點,在第一象限的交點,且.(Ⅰ)求橢圓的方程;(Ⅱ)已知菱形的頂點AC在橢圓上,頂點BC在直線上,求直線 的方程.

查看答案和解析>>

(本小題滿分12分)已知橢圓的長軸長為4。   (1)若以原點為圓心、橢圓短半軸為半徑的圓與直線相切,求橢圓焦點坐標(biāo);   (2)若點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,記直線PM,PN的斜率分別為,當(dāng)時,求橢圓的方程。

查看答案和解析>>

(本小題滿分12分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點, 為橢圓上的動點.

       (Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

       (Ⅱ)若均不重合,設(shè)直線的斜率分別為,證明:為定值;

       (Ⅲ)為過且垂直于軸的直線上的點,若,求點的軌跡方程,并說明軌跡是什么曲線.

查看答案和解析>>


同步練習(xí)冊答案