題目列表(包括答案和解析)
(本小題滿分12分)已知橢圓的離心率為,過右焦點F的直線與相交于、兩點,當(dāng)的斜率為1時,坐標(biāo)原點到的距離為
(I)求,的值;
(II)上是否存在點P,使得當(dāng)繞F轉(zhuǎn)到某一位置時,有成立?
若存在,求出所有的P的坐標(biāo)與的方程;若不存在,說明理由。
(本小題滿分12分)已知橢圓的左、右焦點分別為、,其中也是拋物線的焦點,是與在第一象限的交點,且.(Ⅰ)求橢圓的方程;(Ⅱ)已知菱形的頂點A﹑C在橢圓上,頂點B﹑C在直線上,求直線 的方程.
(本小題滿分12分)已知橢圓的長軸長為4。 (1)若以原點為圓心、橢圓短半軸為半徑的圓與直線相切,求橢圓焦點坐標(biāo); (2)若點P是橢圓C上的任意一點,過原點的直線L與橢圓相交于M,N兩點,記直線PM,PN的斜率分別為,當(dāng)時,求橢圓的方程。
(本小題滿分12分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點, 為橢圓上的動點.
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)若與均不重合,設(shè)直線與的斜率分別為,證明:為定值;
(Ⅲ)為過且垂直于軸的直線上的點,若,求點的軌跡方程,并說明軌跡是什么曲線.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com