寫出的表達(dá)式,(Ⅱ) 經(jīng)過幾年公司總利潤才能超過無息貸款總額? 查看更多

 

題目列表(包括答案和解析)

從社會效益和經(jīng)濟(jì)效益出發(fā),某地投入資金進(jìn)行生態(tài)環(huán)境建設(shè),并以此發(fā)展旅游產(chǎn)業(yè),根據(jù)規(guī)劃,本年度投入800萬元,以后每年投入將比上年減少,本年度當(dāng)?shù)芈糜螛I(yè)收入估計(jì)400萬元,由于該項(xiàng)建設(shè)對旅游業(yè)的促進(jìn)作用,預(yù)計(jì)今后的旅游業(yè)收入每年會比上年增加.

⑴設(shè)年內(nèi)(本年度為第一年)總收入為萬元,旅游業(yè)總收入為萬元,寫出表達(dá)式

⑵至少經(jīng)過幾年旅游業(yè)的總收入才能超過總投入?

查看答案和解析>>

某種汽車購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.9

萬元,汽車的維修費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等

差數(shù)列逐年遞增.

(1)設(shè)使用年該車的總費(fèi)用(包括購車費(fèi)用)為,試寫出的表達(dá)式;

(2)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).

 

查看答案和解析>>

某種汽車購買時(shí)費(fèi)用為14.4萬元,每年應(yīng)交付保險(xiǎn)費(fèi)、養(yǎng)路費(fèi)及汽油費(fèi)共0.9萬元,汽車的維修費(fèi)為:第一年0.2萬元,第二年0.4萬元,第三年0.6萬元,……,依等差數(shù)列逐年遞增.

(1)設(shè)使用年該車的總費(fèi)用(包括購車費(fèi)用)為,試寫出的表達(dá)式;

(2)求這種汽車使用多少年報(bào)廢最合算(即該車使用多少年平均費(fèi)用最少).

查看答案和解析>>

如圖,在四棱柱中,側(cè)棱,,,,,,

(1)求證:

(2)若直線與平面所成角的正弦值為,求的值;

(3)現(xiàn)將與四棱柱形狀和大小完全相同的兩個(gè)四棱柱拼接成一個(gè)新的棱柱,規(guī)定:若拼接成的新的四棱柱形狀和大小完全相同,則視為同一種拼接方案.問:共有幾種不同的方案?在這些拼接成的新四棱柱中,記其中最小的表面積為,寫出的表達(dá)式(直接寫出答案,不必要說明理由)

查看答案和解析>>

(08年浙江卷理)(本題15分)已知是實(shí)數(shù),函數(shù)

(Ⅰ)求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)設(shè)在區(qū)間上的最小值.

(i)寫出的表達(dá)式;

(ii)求的取值范圍,使得

 

查看答案和解析>>

命題人:黃小紅(株洲縣五中)  趙家早(株洲縣五中)  郭珂珊(瀟湘雙語)

       審題人:郭珂珊 (瀟湘雙語)  趙家早(株洲縣五中) 黃小紅(株洲縣五中)  

第Ⅰ卷(選擇題)

一.選擇題:本大題共10小題,每小題5分,共50分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合要求的.答案要寫在答題卷上。

題號

1

2

3

4

5

6

7

8

9

10

答案

D

A

D

D

C

A

C

B

C

C

第Ⅱ卷(非選擇題)

二、填空題:本大題共5小題,每小題5分 ,共25分,把答案填在答題卡中對應(yīng)題號后的橫線上.

11. -160           12.          13.   

14.-;     15.  (1)617       (2)4040

三.解答題:本大題共6小題,共75分。解答應(yīng)寫出文字說明,證明過程或演算步驟。

  16.解(Ⅰ),……2分

,……… 3分

所以,( 4分)

所以    ………6分

(Ⅱ)由f(B)=1得,解得    ………8分

又由,所以   ………10分

由余弦定理知

=

所以   ……… 12分

17.解:記“第一關(guān)第一次過關(guān)”為事件A1,“第一關(guān)第二次過關(guān)”為事件A2;記“第二關(guān)第一次過關(guān)”為事件B1,“第二關(guān)第二次過關(guān)”為事件B2;………1分

(Ⅰ)王同學(xué)獲得1000元獎(jiǎng)金的概率為:

   ………5分

    

(Ⅱ)王同學(xué)獲得獎(jiǎng)金額可能取值為:0 元,1000 元, 4000 元   ………6分

   (7分)       ………8分

    

       …………10分

(另解:=1-   …………10分)

  ……… 12分

18. (本小題滿分12分)

解(Ⅰ)證明:取中點(diǎn),連接,, 又G為AD中點(diǎn)

, GH

,    ………分

同理可證  ,    ………3分

      ……… 4分

(Ⅱ)延長CE,過D作DO垂直直線EC于O,易證DO⊥平面ABCE,AE⊥EC,AE⊥DE,二面角D-AE-C的平面角大小為.

∵DE=,∴OE=1,DO=2

為原點(diǎn),為y軸正方向建立坐標(biāo)系O-xyz (圖略)

則D(0,0,2),A(2,1,0),E(0,1,0) ,C(0,2,0),B(2,2,0),

H(2,,0),G(1,,1),F(xiàn)(0,,0)………6分

 ,         

∴異面直線GF與BD所成的角為 ………8分

 


(Ⅲ)取DC中點(diǎn)P,易證OP⊥平面BCD,所以面BCD一個(gè)法向量為 … 9分

(0,1,0), (-2,-2,2),設(shè)平面的法向量為

,

取x=1,得y=0,z=1,得平面的一個(gè)法向量為 ……… 10分

     ……… 11分

∴二面角A-BD-C的大小為120°! 12分

19.(本小題滿分13分)

解:(Ⅰ)第1年貸款(32000+5000)萬元,第2年5000×萬元…,第n年貸款5000×萬元  …1分

所以貸款總額為:=32000+5000+5000×+…+5000×=52000-20000 … 3分

同理:第1年利潤4000萬元,第2年利潤4000×(1+)萬元,…,

第n年利潤4000×萬元     …………4分  

=4000+4000×+……+4000×=12000[-1]   ………… 6分

(Ⅱ) 由題意>0,    (7分)    12000[-1]>52000-20000 ……8分

化簡得,3×+5×-16>0?  …………9分

設(shè)x=,3x2-16x+5>0?∴x<(舍)或x>5 …………10分

?∴>5, 而……………11分

∴n≥6.  (12分)    ∴經(jīng)過6年公司總利潤才能超過無息貸款總額   ………13分

20.(本小題滿分13分)

解.(Ⅰ)  ), 則     ………1分

    因?yàn)?sub>, 所以當(dāng)時(shí),恒成立,

故F(x)在(0,3)內(nèi)單調(diào)遞減,(2分  ),

而F(x)在x=3處連續(xù) , 所以   ………3分

     當(dāng)時(shí),時(shí)時(shí),所以F(x)在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增!4分

      所以  ………5分

綜上所述,當(dāng)時(shí),,當(dāng)時(shí),!6分

(Ⅱ)若的圖象與的圖象恰有四個(gè)不同交點(diǎn),  即有四個(gè)不同的根,     ………7分

亦即 有四個(gè)不同的根。 ………8分

  令,

!9分

當(dāng)變化時(shí)的變化情況如下表:

(-1,0)

(0,1)

(1,)

的符號

+

-

+

-

的單調(diào)性

由表格知:!11分

畫出草圖和驗(yàn)證可知,當(dāng)時(shí),

高考資源網(wǎng)版權(quán)所有……………12分

函數(shù)的圖象與的圖象恰好有四個(gè)不同的交點(diǎn). …………………13分 

 

21.(本小題滿分13分)

解:(Ⅰ)設(shè)A,()

,∴  ……………1分

則A點(diǎn)的切線方程為

B點(diǎn)的切線方程為 …………2分

   …………3分

 P在直線上   ∴=,       ……………4分

|AF|+|BF|=                   

……………5分

 ……………6分

=,∴,當(dāng)且僅當(dāng)時(shí)取等號

取值范圍為   …………8分

(Ⅱ)∵,

,   ……………9分

設(shè)A,由(1)知

      …………10分

若G在拋物線C上,則   …………11分

 …………12分

,而

   

故存在使G在拋物線C上。    ……………13分

 

 


同步練習(xí)冊答案