已知拋物線的頂點在坐標(biāo)原點O.焦點F在x正半軸上.傾斜角為銳角的直線過F點.設(shè)直線與拋物線交于A.B兩點.與拋物線的準(zhǔn)線交于M點. 查看更多

 

題目列表(包括答案和解析)

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設(shè)直線l與拋物線交于A、B兩點,與拋物線的準(zhǔn)線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x正半軸上,傾斜角為銳角的直線過F點。設(shè)直線與拋物線交于A、B兩點,與拋物線的準(zhǔn)線交于M點,

   (I)若,求直線的斜率;

   (II)若點A、B在x軸上的射影分別為A1、B1,且成等差數(shù)列,求的值。

 

 

查看答案和解析>>

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x正半軸上,傾斜角為銳角的直線l過F點.設(shè)直線l與拋物線交于A、B兩點,與拋物線的準(zhǔn)線交于M點,
MF
FB
,其中λ>0
(I)若λ=1,求直線l的斜率;
(II)若點A、B在x軸上的射影分別為A1、B1,且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列,求λ的值.

查看答案和解析>>

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設(shè)直線l與拋物線交于A、B兩點,與拋物線的準(zhǔn)線交于M點,(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且||,||,2||成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1.圓C2:x2+(y-4)=1的圓心為點N.已知點P是拋物線C1上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

已知拋物線的頂點在坐標(biāo)原點O,焦點F在x軸正半軸上,傾斜角為銳角的直線l過F點,設(shè)直線l與拋物線交于A、B兩點,與拋物線的準(zhǔn)線交于M點,
MF
FB
(λ>0)
(1)若λ=1,求直線l斜率
(2)若點A、B在x軸上的射影分別為A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差數(shù)列求λ的值
(3)設(shè)已知拋物線為C1:y2=x,將其繞頂點按逆時針方向旋轉(zhuǎn)90°變成C1′.圓C2:x2+(y-4)2=1的圓心為點N.已知點P是拋物線C1′上一點(異于原點),過點P作圓C2的兩條切線,交拋物線C′1于T,S,兩點,若過N,P兩點的直線l垂直于TS,求直線l的方程.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6ACAABB   7―12DCDACD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.40  15.    16.6

20090411

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:設(shè)等差數(shù)列

       由成等比數(shù)列,

       得

       即

       得(舍去)。

       故

       所以   6分

   (II)又

       則

       又

       故的等差數(shù)列。

       所以   12分

19.(本小題滿分12分)

       解:設(shè)事件

       則

   (I)設(shè)“賽完兩局比賽結(jié)束”為事件C,則

       則

       即

      

       因為

       所以

       因為   6分

   (II)設(shè)“賽完四局比賽結(jié)束且乙比甲多2分”為事件D,

       則

       即

      

      

       =     12分

20.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

           同上,   8分

          

          

          

           設(shè)面OAC的法向量為

          

           得

           故

           所以二面角O―AC―B的大小為   12分

     

     

    21.(本小題滿分12分)

       (I)解:當(dāng)

           故   1分

           因為   當(dāng)

           當(dāng)

           故上單調(diào)遞減。   5分

       (II)解:由題意知上恒成立,

           即上恒成立。   7分

           令

           因為   9分       

           故上恒成立等價于

              11分

           解得   12分

    22.(本小題滿分12分)

           解:依題意設(shè)拋物線方程為

           直線

           則的方程為

          

           因為

           即

           故

       (I)若

          

           故點B的坐標(biāo)為

           所以直線   5分

       (II)聯(lián)立

          

           則

           又   7分

           故   9分

           因為成等差數(shù)列,

           所以

           故

           將代入上式得

           。   12分

     

     

     

     

     


    同步練習(xí)冊答案