8.已知函數(shù).則不等式上的解集為 A. B.(0.1) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),現(xiàn)給出下列命題:
①當圖象是一條連續(xù)不斷的曲線時,則a=;
②當圖象是一條連續(xù)不斷的曲線時,能找到一個非零實數(shù)a,使得f(x)在R上是增函數(shù);
③當時,不等式f(1+a)•f(1-a)<0恒成立;
④當時,則方程f(x2+1)-f(2x+4)=0的解集為{-1,3};
⑤函數(shù) y=f(|x+1|)是偶函數(shù).
其中正確的命題是( )
A.①②③
B.②④⑤
C.①③④
D.①②③④⑤

查看答案和解析>>

3、已知函數(shù)f(x)是二次函數(shù),不等式f(x)>0的解集是(0,4),且f(x)在區(qū)間[-1,5]上的最大值是12,則f(x)的解析式為
f(x)=-3(x-2)2+12

查看答案和解析>>

已知函數(shù)f(x)=2-x-1-3,x∈R,g(x)=
f(x-1)+2,-1<x≤0
g(x-1)+k,x>0
,有下列說法:
①不等式f(x)>0的解集是(-∞,-1-log23);
②若關于x的方程f2(x)+8f(x)-m=0有實數(shù)解,則m≥-16;
③當k=0時,若g(x)≤m有解,則m的取值范圍為[0,+∞);若g(x)<m恒成立,則m的取值范圍為[1,+∞);
④若k=2,則函數(shù)h(x)=g(x)-2x在區(qū)間[0,n](n∈N*)上有n+1個零點.
其中你認為正確的所有說法的序號是
①③④
①③④

查看答案和解析>>

已知函數(shù)f(x)=
(3a-1)x+5a,x<1
logax,x≥1
,現(xiàn)給出下列命題:
①當圖象是一條連續(xù)不斷的曲線時,則a=
1
8
;
②當圖象是一條連續(xù)不斷的曲線時,能找到一個非零實數(shù)a,使得f(x)在R上是增函數(shù);
③當a∈{m|
1
8
<m<
1
3
,m∈R}
時,不等式f(1+a)•f(1-a)<0恒成立;
④當a=
1
4
時,則方程f(x2+1)-f(2x+4)=0的解集為{-1,3};
⑤函數(shù) y=f(|x+1|)是偶函數(shù).
其中正確的命題是( 。

查看答案和解析>>

精英家教網(wǎng)已知函數(shù)y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域為[-8,8]且它們在[0,8]上的圖象如圖所示,則關于x的不等式f(x)•g(x)<0的解集為
 

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應寫出文字說明,證明過程或演算步驟。

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當

       故   1分

       因為   當

       當

       故上單調遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

<font id="yxoho"></font>
  • <input id="yxoho"></input>
    <pre id="yxoho"><optgroup id="yxoho"></optgroup></pre>
  •        同上,   8分

          

          

          

           設面OAC的法向量為

          

           得

           故

           所以二面角O―AC―B的大小為   12分

    20.(本小題滿分12分)

       (I)解:設次將球擊破,

        則   5分

       (II)解:對于方案甲,積分卡剩余點數(shù)

           由已知可得

          

          

          

           故

           故   8分

           對于方案乙,積分卡剩余點數(shù)

           由已知可得

          

          

          

          

           故

           故   11分

           故

           所以選擇方案甲積分卡剩余點數(shù)最多     12分

    21.(本小題滿分12分)

           解:依題意設拋物線方程為,

           直線

           則的方程為

          

           因為

           即

           故

       (I)若

          

           故點B的坐標為

           所以直線   5分

       (II)聯(lián)立

          

           則

           又   7分

           故   9分

           因為成等差數(shù)列,

           所以

           故

           將代入上式得

           。   12分

    22.(本小題滿分12分)

       (I)解:

           又

           故   2分

           而

           當

           故為增函數(shù)。

           所以的最小值為0   4分

       (II)用數(shù)學歸納法證明:

           ①當

           又

           所以為增函數(shù),即

           則

           所以成立       6分

           ②假設當成立,

           那么當

           又為增函數(shù),

          

           則成立。

           由①②知,成立   8分

       (III)證明:由(II)

           得

           故   10分

           則

          

           所以成立   12分

     

     

     

     

     


    同步練習冊答案