9.在則以A.B為焦點且過點C的橢圓的離心率等于 查看更多

 

題目列表(包括答案和解析)

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點且過點C的橢圓的離心率等于( 。
A.
1
4
B.
1
2
C.
3
-1
D.
7
-1
3

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點且過點C的橢圓的離心率等于( )
A.
B.
C.-1
D.

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點且過點C的橢圓的離心率等于( )
A.
B.
C.-1
D.

查看答案和解析>>

在△ABC中,AB=2BC,∠ABC=120°,則以A、B為焦點且過點C的橢圓的離心率等于


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式-1
  4. D.
    數(shù)學(xué)公式

查看答案和解析>>

在△ABC中,∠ACB=60°,sinA∶sinB=8∶5,則以A、B為焦點且過點C的橢圓的離心率為________.

查看答案和解析>>

 

一、選擇題:本大題共12小題,每小題5分,共60分。

1―6AABCBD   7―12ACDCBD

二、填空題:本大題共4小題,每小題5分,共20分。

13.60°  14.-8  15.    16.6

三、解答題:本大題共6小題,共70分,解答應(yīng)寫出文字說明,證明過程或演算步驟。

17.(本小題滿分10分)

   (I)解:因為

       由正弦定理得

       所以

       又

       故   5分

   (II)由

       故

          10分

18.(本小題滿分12分)

   (I)解:當

       故   1分

       因為   當

       當

       故上單調(diào)遞減。   5分

   (II)解:由題意知上恒成立,

       即上恒成立。   7分

       令

       因為   9分       

       故上恒成立等價于

          11分

       解得   12分

19.(本小題滿分12分)

   (I)證明:

          2分

       又

   (II)方法一

       解:過O作

      

       則O1是ABC截面圓的圓心,且BC是直徑,

       過O作于M,則M為PA的中點,

       連結(jié)O1A,則四邊形MAO1O為矩形,

          8分

       過O作于E,連EO1­,

       則為二面角O―AC―B的平面角   10分

       在

      

       在

       所以二面角O―AC―B的大小為   12分

       方法二

    <input id="uayxb"></input>

    1. <tfoot id="uayxb"></tfoot>

             同上,   8分

            

            

            

             設(shè)面OAC的法向量為

            

             得

             故

             所以二面角O―AC―B的大小為   12分

      20.(本小題滿分12分)

         (I)解:設(shè)次將球擊破,

          則   5分

         (II)解:對于方案甲,積分卡剩余點數(shù)

             由已知可得

            

            

            

             故

             故   8分

             對于方案乙,積分卡剩余點數(shù)

             由已知可得

            

            

            

            

             故

             故   11分

             故

             所以選擇方案甲積分卡剩余點數(shù)最多     12分

      21.(本小題滿分12分)

             解:依題意設(shè)拋物線方程為,

             直線

             則的方程為

            

             因為

             即

             故

         (I)若

            

             故點B的坐標為

             所以直線   5分

         (II)聯(lián)立

            

             則

             又   7分

             故   9分

             因為成等差數(shù)列,

             所以

             故

             將代入上式得

             。   12分

      22.(本小題滿分12分)

         (I)解:

             又

             故   2分

             而

             當

             故為增函數(shù)。

             所以的最小值為0   4分

         (II)用數(shù)學(xué)歸納法證明:

             ①當

             又

             所以為增函數(shù),即

             則

             所以成立       6分

             ②假設(shè)當成立,

             那么當

             又為增函數(shù),

            

             則成立。

             由①②知,成立   8分

         (III)證明:由(II)

             得

             故   10分

             則

            

             所以成立   12分

       

       

       

       

       


      同步練習(xí)冊答案