當(dāng)且僅當(dāng)時(shí).函數(shù)取得最大值.--------9分 查看更多

 

題目列表(包括答案和解析)

已知函數(shù)f(x)=ex-ax,其中a>0.

(1)若對(duì)一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數(shù)f(x)的圖像上去定點(diǎn)A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

當(dāng)時(shí)單調(diào)遞減;當(dāng)時(shí)單調(diào)遞增,故當(dāng)時(shí),取最小值

于是對(duì)一切恒成立,當(dāng)且僅當(dāng).       、

當(dāng)時(shí),單調(diào)遞增;當(dāng)時(shí),單調(diào)遞減.

故當(dāng)時(shí),取最大值.因此,當(dāng)且僅當(dāng)時(shí),①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當(dāng)時(shí),單調(diào)遞減;當(dāng)時(shí),單調(diào)遞增.故當(dāng),

從而

所以因?yàn)楹瘮?shù)在區(qū)間上的圖像是連續(xù)不斷的一條曲線,所以存在使成立.

【點(diǎn)評(píng)】本題考查利用導(dǎo)函數(shù)研究函數(shù)單調(diào)性、最值、不等式恒成立問(wèn)題等,考查運(yùn)算能力,考查分類討論思想、函數(shù)與方程思想等數(shù)學(xué)方法.第一問(wèn)利用導(dǎo)函數(shù)法求出取最小值對(duì)一切x∈R,f(x) 1恒成立轉(zhuǎn)化為從而得出求a的取值集合;第二問(wèn)在假設(shè)存在的情況下進(jìn)行推理,然后把問(wèn)題歸結(jié)為一個(gè)方程是否存在解的問(wèn)題,通過(guò)構(gòu)造函數(shù),研究這個(gè)函數(shù)的性質(zhì)進(jìn)行分析判斷.

 

查看答案和解析>>

某省環(huán)保研究所對(duì)市中心每天環(huán)境放射性污染情況進(jìn)行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時(shí)刻(時(shí)) 的關(guān)系為,其中是與氣象有關(guān)的參數(shù),且

(1)令, ,寫出該函數(shù)的單調(diào)區(qū)間,并選擇其中一種情形進(jìn)行證明;

(2)若用每天的最大值作為當(dāng)天的綜合放射性污染指數(shù),并記作,求;

(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過(guò)2,試問(wèn)目前市中心的綜合放射性污染指數(shù)是否超標(biāo)?

【解析】第一問(wèn)利用定義法求證單調(diào)性,并判定結(jié)論。

第二問(wèn)(2)由函數(shù)的單調(diào)性知,

,即t的取值范圍是. 

當(dāng)時(shí),記

 

上單調(diào)遞減,在上單調(diào)遞增,

第三問(wèn)因?yàn)楫?dāng)且僅當(dāng)時(shí),.

故當(dāng)時(shí)不超標(biāo),當(dāng)時(shí)超標(biāo).

 

查看答案和解析>>

某種特色水果每年的上市時(shí)間從4月1號(hào)開始僅能持續(xù)5個(gè)月的時(shí)間.上市初期價(jià)格呈現(xiàn)上漲態(tài)勢(shì),中期價(jià)格開始下跌,后期價(jià)格在原有價(jià)格基礎(chǔ)之上繼續(xù)下跌.現(xiàn)有三種價(jià)格變化的模擬函數(shù)可選擇:①f(x)=p•qx;②f(x)=px2+qx+7;③f(x)=logq(x+p).其中p,q均為常數(shù)且q>1.(注:x表示上市時(shí)間,f(x)表示價(jià)格,記x=0表示4月1號(hào),x=1表示5月1號(hào),…,以此類推,x∈[0,5])
(Ⅰ)在上述三個(gè)價(jià)格模擬函數(shù)中,哪一個(gè)更能體現(xiàn)該種水果的價(jià)格變化態(tài)勢(shì),請(qǐng)你選擇,并簡(jiǎn)要說(shuō)明理由;
(Ⅱ)對(duì)(I)中所選的函數(shù)f(x),若f(2)=11,f(3)=10,記g(x)=
f(x)-2x-13x+1
,經(jīng)過(guò)多年的統(tǒng)計(jì)發(fā)現(xiàn),當(dāng)函數(shù)g(x)取得最大值時(shí),拓展外銷市場(chǎng)的效果最為明顯,請(qǐng)預(yù)測(cè)明年拓展外銷市場(chǎng)的時(shí)間是幾月1號(hào)?

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無(wú)需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無(wú)需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

已知f(x)=a2x-x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無(wú)需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測(cè)y=f(x)的單調(diào)性(無(wú)需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>


同步練習(xí)冊(cè)答案