解:在方程兩邊同乘以.即 查看更多

 

題目列表(包括答案和解析)

用數(shù)學(xué)歸納法證明(n+1)(n+2)…(n+n)=2n·1·3·…·(2n-1)(n∈N)時(shí),證明從n=k到n=k+1的過(guò)程中,相當(dāng)于在假設(shè)成立的那個(gè)式子兩邊同乘以(    )

A.2k+2                       B.(2k+1)(2k+2)

C.                    D.

查看答案和解析>>

若數(shù)列an=(2n-1)×2n,求其前n項(xiàng)和為Sn=1×2+3×22+…+(2n-1)×2n時(shí),可對(duì)上式左、右的兩邊同乘以2,得到2Sn=1×22+3×23+…+(2n-1)×2n+1,兩式相減并整理后,求得Sn=(2n-3)×2n+1+6.試類比此方法,求得bn=n2×2n的前n項(xiàng)和Tn=
(n2-2n+3)×2n+1-6
(n2-2n+3)×2n+1-6

查看答案和解析>>

數(shù)列首項(xiàng),前項(xiàng)和滿足等式(常數(shù),……)

(1)求證:為等比數(shù)列;

(2)設(shè)數(shù)列的公比為,作數(shù)列使 (……),求數(shù)列的通項(xiàng)公式.

(3)設(shè),求數(shù)列的前項(xiàng)和.

【解析】第一問(wèn)利用由

兩式相減得

時(shí),

從而  即,而

從而  故

第二問(wèn)中,     又為等比數(shù)列,通項(xiàng)公式為

第三問(wèn)中,

兩邊同乘以

利用錯(cuò)位相減法得到和。

(1)由

兩式相減得

時(shí),

從而   ………………3分

  即,而

從而  故

對(duì)任意,為常數(shù),即為等比數(shù)列………………5分

(2)    ……………………7分

為等比數(shù)列,通項(xiàng)公式為………………9分

(3)

兩邊同乘以

………………11分

兩式相減得

 

查看答案和解析>>

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當(dāng)x>1時(shí),有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問(wèn)題:
(1)解不等式:9x>5x+4x;
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

方程的解可視為函數(shù)的圖像與函數(shù)的圖像交點(diǎn)的橫坐標(biāo). 若方程的各個(gè)實(shí)根所對(duì)應(yīng)的點(diǎn)()(=)均在直線的同側(cè),則實(shí)數(shù)的取值范圍是                .

 

查看答案和解析>>


同步練習(xí)冊(cè)答案