(2)的可能取值為0.100.200.300.400 查看更多

 

題目列表(包括答案和解析)

現(xiàn)有4個人去參加某娛樂活動,該活動有甲、乙兩個游戲可供參加者選擇.為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪個游戲,擲出點數(shù)為1或2的人去參加甲游戲,擲出點數(shù)大于2的人去參加乙游戲.

(Ⅰ)求這4個人中恰有2人去參加甲游戲的概率;

(Ⅱ)求這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率;

(Ⅲ)用X,Y分別表示這4個人中去參加甲、乙游戲的人數(shù),記,求隨機變量的分布列與數(shù)學(xué)期望.

【解析】依題意,這4個人中,每個人去參加甲游戲的概率為,去參加乙游戲的概率為.

設(shè)“這4個人中恰有i人去參加甲游戲”為事件

.

(1)這4個人中恰有2人去參加甲游戲的概率

(2)設(shè)“這4個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)”為事件B,則.由于互斥,故

所以,這個人中去參加甲游戲的人數(shù)大于去參加乙游戲的人數(shù)的概率為.

(3)的所有可能取值為0,2,4.由于互斥,互斥,故

    

所以的分布列是

0

2

4

P

隨機變量的數(shù)學(xué)期望.

 

查看答案和解析>>

某校從參加某次知識競賽的同學(xué)中,選取60名同學(xué)將其成績(百分制)(均為整數(shù))分成6組后,得到部分頻率分布直方圖(如圖),觀察圖形中的信息,回答下列問題.

(Ⅰ)求分數(shù)在[70,80)內(nèi)的頻率,并補全這個頻率分布直方圖;

(Ⅱ)從頻率分布直方圖中,估計本次考試的平均分;

(Ⅲ)若從60名學(xué)生中隨機抽取2人,抽到的學(xué)生成績在[40,70)記0分,在[70,100]記1分,用X表示抽取結(jié)束后的總記分,求X的分布列和數(shù)學(xué)期望.

【解析】第一問中設(shè)分數(shù)在[70,80)內(nèi)的頻率為x,根據(jù)頻率分布直方圖,則有

(0.01+0.015×2+0.025+0.005)×10+x=1,可得x=0.3,

第二問平均分為:

第三問學(xué)生成績在[40,70)的有0.4×60=24人,

在[70,100]的有0.6×60=36人,并且X的

可能取值是0,1,2.

 

查看答案和解析>>

三個求職者到某公司應(yīng)聘,該公司為他們提供了A,B,C,D四個崗位,每人從中任選一個崗位。

(1)求恰有兩個崗位沒有被選的概率;

(2)設(shè)選擇A崗位的人數(shù)為,求的分布列及數(shù)學(xué)期望。

【解析】第一問利用古典概型概率公式得到記“恰有2個崗位沒有被選”為事件A,則

第二問中,可能取值為0,1,2,3, 則  ,

, 

從而得到分布列和期望值。

解:(1)記“恰有2個崗位沒有被選”為事件A,則……6分

(2)可能取值為0,1,2,3,… 7分

 ,

, 

列出分布列 ( 1分)

 

查看答案和解析>>

設(shè)隨機變量ξ的可能取值為1,2,3,…,nPξ≤3)=0.3,那么n的值為

A.3                       B.6                              C.10                                   D.不能確定

查看答案和解析>>

(2011•杭州一模)設(shè)函數(shù)f(x)=x2+(2a+1)x+a2+3a(a∈R).
(I)若f(x)在[0,2]上的最大值為0,求a的值;
(II)若f(x)在閉區(qū)間[α,β]上單調(diào),且{y|y=f(x),α≤x≤β}=[α,β],求α的取值范圍.

查看答案和解析>>


同步練習(xí)冊答案