題目列表(包括答案和解析)
設(shè)數(shù)滿足:.
(1)求證:數(shù)列是等比數(shù)列;
(2)若,且對(duì)任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.
1 |
an•an+1 |
1 |
2 |
一、填空題:本大題共14小題,每小題5分,計(jì)70分.
1. 2. 3. 4.25 5. 6.
7. 8.③ 9.6 10.50%(填0.5,都算對(duì))
11. 12.< 13.12 14.或
二、解答題:本大題共6小題,計(jì)90分.
15.解:(Ⅰ)當(dāng)時(shí),點(diǎn)P共有28個(gè),而滿足的點(diǎn)P有19個(gè),
從而所求的概率為………………………………………………………………………(7分)
(Ⅱ)當(dāng)時(shí),由構(gòu)成的矩形的面積為,而滿足
的區(qū)域的面積為,故所求的概率為……………………………………(14分)
16.證:(Ⅰ)連接交于,連接.
∵分別是的中點(diǎn),∴∥且=,∴四邊形是矩形.
∴是的中點(diǎn)………………………………………………………………………………(3分)
又∵是的中點(diǎn),∴∥……………………………………………………………(5分)
則由,,得∥………………………………………(7分)
(注:利用面面平行來(lái)證明的,類似給分)
(Ⅱ) ∵在直三棱柱中,⊥底面,∴⊥.
又∵,即⊥,∴⊥面………………………(9分)
而面,∴⊥……………………………………………………………(12分)
又,∴平面……………………………………………………………(14分)
17. 解:(Ⅰ)由,得
,所以………………………………………………(4分)
則,所以……………………………………………………(7分)
(Ⅱ)方案一:選擇①③.
∵A=30°,a=1,
得,解得b=,則c=…………………(11分)
∴…………………………………(14分)
方案二:選擇②③. 可轉(zhuǎn)化為選擇①③解決,類似給分.
(注:選擇①②不能確定三角形)
18. 解:(Ⅰ),即,
,準(zhǔn)線,……………………………………………………(2分)
設(shè)⊙C的方程為,將O、F、A三點(diǎn)坐標(biāo)代入得:
,解得………………………………………………………(4分)
∴⊙C的方程為……………………………………………………(5分)
(Ⅱ)設(shè)點(diǎn)B坐標(biāo)為,則,整理得:
對(duì)任意實(shí)數(shù)都成立……………………………………………(7分)
∴,解得或,
故當(dāng)變化時(shí),⊙C經(jīng)過(guò)除原點(diǎn)O外的另外一個(gè)定點(diǎn)B……………………………(10分)
(Ⅲ)由B、、得,
∴,解得……………………………………………(12分)
又 ,∴………………………………………………………………(14分)
又橢圓的離心率()……………………(15分)
∴橢圓的離心率的范圍是………………………………………………………(16分)
19. (Ⅰ)證:因?yàn)閷?duì)任意正整數(shù),總成立,
令,得,則…………………………………………(1分)
令,得 (1) , 從而 (2),
(2)-(1)得,…………………………………………………………………(3分)
綜上得,所以數(shù)列是等比數(shù)列…………………………………………(4分)
(Ⅱ)正整數(shù)成等差數(shù)列,則,所以,
則……………………………………………………(7分)
①當(dāng)時(shí),………………………………………………………………(8分)
②當(dāng)時(shí),…………………………(9分)
③當(dāng)時(shí),……………………(10分)
(Ⅲ)正整數(shù)成等比數(shù)列,則,則,
所以,……………(13分)
①當(dāng),即時(shí),……………………………………………(14分)
②當(dāng),即時(shí),………………………………(15分)
③當(dāng),即時(shí),………………………………(16分)
20. 解: (Ⅰ)當(dāng)時(shí),.
因?yàn)楫?dāng)時(shí),,,
且,
所以當(dāng)時(shí),,且……………………………………(3分)
由于,所以,又,
故所求切線方程為,
即…………………………………………………………………(5分)
(Ⅱ) 因?yàn)?sub>,所以,則
當(dāng)時(shí),因?yàn)?sub>,,
所以由,解得,
從而當(dāng)時(shí), ……………………………………………(6分)
① 當(dāng)時(shí),因?yàn)?sub>,,
所以由,解得,
從而當(dāng)時(shí), …………………………………………(7分)
③當(dāng)時(shí),因?yàn)?sub>,
從而 一定不成立………………………………………………………………(8分)
綜上得,當(dāng)且僅當(dāng)時(shí),,
故 …………………………………………(9分)
從而當(dāng)時(shí),取得最大值為…………………………………………………(10分)
(Ⅲ)“當(dāng)時(shí),”等價(jià)于“對(duì)恒成立”,
即“(*)對(duì)恒成立” ……………………………………(11分)
① 當(dāng)時(shí),,則當(dāng)時(shí),,則(*)可化為
,即,而當(dāng)時(shí),,
所以,從而適合題意………………………………………………………………(12分)
② 當(dāng)時(shí),.
⑴ 當(dāng)時(shí),(*)可化為,即,而,
所以,此時(shí)要求
…………………………………………………………(13分)
⑵ 當(dāng)時(shí),(*)可化為,
所以,此時(shí)只要求………………………………………………………(14分)
(3)當(dāng)時(shí),(*)可化為,即,而,
所以,此時(shí)要求…………………………………………………………(15分)
由⑴⑵⑶,得符合題意要求.
綜合①②知,滿足題意的存在,且的取值范圍是………………………………(16分)
數(shù)學(xué)附加題部分
21.A.解:因?yàn)镻A與圓相切于點(diǎn)A,所以.而M為PA的中點(diǎn),
所以PM=MA,則.
又,所以,所以……………………(5分)
在中,由,
即,所以,
從而……………………………………………………………………………(10分)
B.解:,所以=……………………………(5分)
即在矩陣的變換下有如下過(guò)程,,
則,即曲線在矩陣的變換下的解析式為……(10分)
C.解:由題設(shè)知,圓心,故所求切線的直角坐標(biāo)方程
為……………………………………………………………………………(6分)
從而所求切線的極坐標(biāo)方程為………………………………(10分)
D.證:因?yàn)?sub>,利用柯西不等式,得…………………………(8分)
即………………………………………………………………………(10分)
22.解: (Ⅰ)以A為原點(diǎn),AB、AC、AP分別為x軸、y軸、z軸建立空間直角坐標(biāo)系A(chǔ)-xyz,
則A(0,0,0),B(2,0,0),C(0,2,0),E(0,1,0),P(0,0,1),
所以,……………………………(4分)
故異面直線BE與PC所成角的余弦值為……………………………………(5分)
(Ⅱ)作PM⊥BE交BE(或延長(zhǎng)線)于M,作CN⊥BE交BE(或延長(zhǎng)線)于N,
則存在實(shí)數(shù)m、n,使得,即
因?yàn)?sub>,所以
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com