08[80.90) ③[90.100) 查看更多

 

題目列表(包括答案和解析)

(本小題滿分12分)

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有1000名學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題:

(1)求頻率分布表中的,值,并補(bǔ)全頻數(shù)條形圖;

(2)根據(jù)頻數(shù)條形圖估計(jì)該樣本的中位數(shù)是多少?

(3)若成績(jī)?cè)?5.5~85.5分的學(xué)生為三等獎(jiǎng),問(wèn)該校獲得三等獎(jiǎng)的學(xué)生約為多少人?

頻率分布表

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

0.16

70.5~80.5

10

0.20

80.5~90.5

16

90.5~100.5

合計(jì)

1

查看答案和解析>>

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部缺損的頻率分布表,解答下列問(wèn)題:
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi)),并根據(jù)該頻率分布表畫(huà)出頻率分布直方圖;
(Ⅱ)根據(jù)樣本中50位同學(xué)估計(jì)參加競(jìng)賽的900名學(xué)生的競(jìng)賽成績(jī)平均分.
分組 頻數(shù) 頻率
50.5~60.5 4 0.08
60.5~70.5 0.16
70.5~80.5 10
80.5~90.5 16 0.32
90.5~100.5 0.24
合計(jì) 50

查看答案和解析>>

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽. 為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì). 請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題:

(1)填充頻率分布表的空格(將答案直接填在表格內(nèi));

分組

頻數(shù)

頻率

50.5~60.5

4

0.08

60.5~70.5

 

0.16

70.5~80.5

10

 

80.5~90.5

16

0.32

90.5~100.5

 

 

合計(jì)

50

 

(2)補(bǔ)全頻數(shù)條形圖;

(3)若成績(jī)?cè)?5.5~85.5分的學(xué)生為二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人。

 

查看答案和解析>>

為了讓學(xué)生了解環(huán)保知識(shí),增強(qiáng)環(huán)保意識(shí),某中學(xué)舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有900名學(xué)生參加了這次競(jìng)賽. 為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì). 請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)分布直方圖,解答下列問(wèn)題:
(1)填充頻率分布表的空格(將答案直接填在表格內(nèi));

分組
頻數(shù)
頻率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合計(jì)
50
 
(2)補(bǔ)全頻數(shù)條形圖;

(3)若成績(jī)?cè)?5.5~85.5分的學(xué)生為二等獎(jiǎng),問(wèn)獲得二等獎(jiǎng)的學(xué)生約為多少人。

查看答案和解析>>

某城市舉行了一次“環(huán)保知識(shí)競(jìng)賽”,共有1000名學(xué)生參加了這次競(jìng)賽.為了了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)根據(jù)尚未完成的頻率分布表和頻率分布直方圖,解答下列問(wèn)題:
(1)求頻率分布表中m、n的值以及樣本容量,并補(bǔ)全頻率分布直方圖;
(2)若將成績(jī)?cè)?0.5~90.5分的學(xué)生定為二等獎(jiǎng),試估計(jì)獲得二等獎(jiǎng)的學(xué)生的人數(shù)?
頻率分布表
分組 頻數(shù) 頻率
50.5~60.5 4 0.08
60.5~70.5 m 0.16
70.5~80.5 10 0.20
80.5~90.5 16
90.5~100.5 n
合計(jì)

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.;  2.;   3.;  4.;  5. 11;  6. 210; 7. 16;   8. 3;  9.; 10.; 11. 7; 12.; 13.;  14.(結(jié)果為,不扣分).

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)50;0.04;0.10 .    ………… 6分

       (2)如圖.      ……………… 10分

       (3)在隨機(jī)抽取的名同學(xué)中有

出線,.      …………… 13分

答:在參加的名中大概有63名同學(xué)出線.      

   ………………… 14分

16.(本小題滿分14分)

解:真,則有,即.                    ------------------4分

真,則有,即.     ----------------9分

中有且只有一個(gè)為真命題,則一真一假.

①若真、假,則,且,即;   ----------------11分

②若假、真,則,且,即3≤.    ----------------13分

故所求范圍為:或3≤.                          -----------------14分

17.(本小題滿分15分)

解:(1)設(shè)在(1)的條件下方程有實(shí)根為事件

數(shù)對(duì)共有對(duì).                                   ------------------2分

若方程有實(shí)根,則,即.                 -----------------4分

則使方程有實(shí)根的數(shù)對(duì)對(duì).                                                         ------------------6分

所以方程有實(shí)根的概率.                          ------------------8分

(2)設(shè)在(2)的條件下方程有實(shí)根為事件

,所以

-------------10分

方程有實(shí)根對(duì)應(yīng)區(qū)域?yàn)?sub>,.          --------------12分

所以方程有實(shí)根的概率.------------------15分

 

18.(本小題滿分15分)

解:(1)易得

.當(dāng)時(shí),在直角中,,故.所以.     ------------4分

所以

所以異面直線所成角余弦值為.- -----7分

(2)設(shè)直線與平面所成的角為,平面的一個(gè)法向量為.

則由.得可取,-------11分

, ,------------13分

,,

即直線與平面所成角的取值范圍為.         ------------------------15分

19.(本小題滿分16分)

解:(1)設(shè)關(guān)于l的對(duì)稱點(diǎn)為,則,

解得,即,故直線的方程為

,解得.                       ------------------------5分

(2)因?yàn)?sub>,根據(jù)橢圓定義,得

,所以.又,所以.所以橢圓的方程為.                                        ------------------------10分

(3)假設(shè)存在兩定點(diǎn)為,使得對(duì)于橢圓上任意一點(diǎn)(除長(zhǎng)軸兩端點(diǎn))都有為定值),即?,將代入并整理得…(*).由題意,(*)式對(duì)任意恒成立,所以,解之得

所以有且只有兩定點(diǎn),使得為定值.   ---------------16分

 

 

 

20.(本小題滿分16分)

解:(1).                        ------------------------2分

因?yàn)?sub>,令;令.所以函數(shù)的增區(qū)間為,減區(qū)間為.                                           ------------------------5分

(2)因?yàn)?sub>,設(shè),則.----------6分

設(shè)切點(diǎn)為,則切線的斜率為,切線方程為,由點(diǎn)在切線上知,化簡(jiǎn)得,即

所以僅可作一條切線,方程是.              ------------------------9分

(3),.                  

上恒成立上的最小值.--------------11分

①當(dāng)時(shí),上單調(diào)遞減,上最小值為,不符合題意,故舍去;               ------------------------12分

②當(dāng)時(shí),令

當(dāng)時(shí),即時(shí),函數(shù)在上遞增,的最小值為;解得.                                       ------------------------13分

當(dāng)時(shí),即時(shí),函數(shù)在上遞減,的最小值為,無(wú)解;                                                -----------------------14分

當(dāng)時(shí),即時(shí),函數(shù)在上遞減、在上遞增,所以的最小值為,無(wú)解.                ------------------------15分

綜上,所求的取值范圍為.                     ------------------------16分

 

 

 

 

 


同步練習(xí)冊(cè)答案