19.一束光線從點出發(fā).經(jīng)直線l:上一點反射后.恰好穿過點. 查看更多

 

題目列表(包括答案和解析)

(本題滿分16分)

一束光線從點出發(fā),經(jīng)過直線上的一點D反射后,經(jīng)過點.

⑴求以A,B為焦點且經(jīng)過點D的橢圓C的方程;

⑵過點作直線交橢圓C于P、Q兩點,以AP、AQ為鄰邊作平行四邊形APRQ,求對角線AR長度的取值范圍。

 

查看答案和解析>>

(本小題滿分12分)一束光線從點出發(fā),經(jīng)直線l:上一點反射后,恰好穿過點.(1)求點的坐標(biāo);(2)求以、為焦點且過點的橢圓的方程;  (3)設(shè)點是橢圓上除長軸兩端點外的任意一點,試問在軸上是否存在兩定點、,使得直線、的斜率之積為定值?若存在,請求出定值,并求出所有滿足條件的定點、的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

(文科做)(本小題滿分16分)

已知橢圓過點,離心率為,圓的圓心為坐標(biāo)原點,直徑為橢圓的短軸,圓的方程為.過圓上任一點作圓的切線,切點為

(1)求橢圓的方程;

(2)若直線與圓的另一交點為,當(dāng)弦最大時,求直線的直線方程;

(3)求的最值.

 

查看答案和解析>>

(本小題滿分14分)一束光線從點出發(fā),經(jīng)直線上一點反射后,恰好穿過點

(Ⅰ)求點關(guān)于直線的對稱點的坐標(biāo);

(Ⅱ)求以為焦點且過點的橢圓的方程;

(Ⅲ)設(shè)直線與橢圓的兩條準(zhǔn)線分別交于、兩點,點為線段上的動點,求點 的距離與到橢圓右準(zhǔn)線的距離之比的最小值,并求取得最小值時點的坐標(biāo).

 

查看答案和解析>>

(本小題滿分14分)一束光線從點出發(fā),經(jīng)直線上一點反射后,恰好穿過點

(Ⅰ)求點關(guān)于直線的對稱點的坐標(biāo);

(Ⅱ)求以、為焦點且過點的橢圓的方程;

(Ⅲ)設(shè)直線與橢圓的兩條準(zhǔn)線分別交于、兩點,點為線段上的動點,求點 的距離與到橢圓右準(zhǔn)線的距離之比的最小值,并求取得最小值時點的坐標(biāo).

 

查看答案和解析>>

一、填空題:(本大題共14小題,每小題5分,共70分.)

1.;  2.;   3.;  4.;  5. 11;  6. 210; 7. 16;   8. 3;  9.; 10.; 11. 7; 12.; 13.;  14.(結(jié)果為,不扣分).

二、解答題:(本大題共6小題,共90分.)

15.(本小題滿分14分)

解:(1)50;0.04;0.10 .    ………… 6分

       (2)如圖.      ……………… 10分

       (3)在隨機抽取的名同學(xué)中有

出線,.      …………… 13分

答:在參加的名中大概有63名同學(xué)出線.      

   ………………… 14分

16.(本小題滿分14分)

解:真,則有,即.                    ------------------4分

真,則有,即.     ----------------9分

、中有且只有一個為真命題,則、一真一假.

①若真、假,則,且,即;   ----------------11分

②若假、真,則,且,即3≤.    ----------------13分

故所求范圍為:或3≤.                          -----------------14分

17.(本小題滿分15分)

解:(1)設(shè)在(1)的條件下方程有實根為事件

數(shù)對共有對.                                   ------------------2分

若方程有實根,則,即.                 -----------------4分

則使方程有實根的數(shù)對對.                                                         ------------------6分

所以方程有實根的概率.                          ------------------8分

(2)設(shè)在(2)的條件下方程有實根為事件

,所以

-------------10分

方程有實根對應(yīng)區(qū)域為.          --------------12分

所以方程有實根的概率.------------------15分

 

18.(本小題滿分15分)

解:(1)易得

.當(dāng)時,在直角中,,故.所以,.     ------------4分

所以

所以異面直線所成角余弦值為.- -----7分

(2)設(shè)直線與平面所成的角為,平面的一個法向量為.

則由.得可取,-------11分

, ,------------13分

,,,

即直線與平面所成角的取值范圍為.         ------------------------15分

19.(本小題滿分16分)

解:(1)設(shè)關(guān)于l的對稱點為,則,

解得,,即,故直線的方程為

,解得.                       ------------------------5分

(2)因為,根據(jù)橢圓定義,得

,所以.又,所以.所以橢圓的方程為.                                        ------------------------10分

(3)假設(shè)存在兩定點為,使得對于橢圓上任意一點(除長軸兩端點)都有為定值),即?,將代入并整理得…(*).由題意,(*)式對任意恒成立,所以,解之得

所以有且只有兩定點,使得為定值.   ---------------16分

 

 

 

20.(本小題滿分16分)

解:(1).                        ------------------------2分

因為,令;令.所以函數(shù)的增區(qū)間為,減區(qū)間為.                                           ------------------------5分

(2)因為,設(shè),則.----------6分

設(shè)切點為,則切線的斜率為,切線方程為,由點在切線上知,化簡得,即

所以僅可作一條切線,方程是.              ------------------------9分

(3).                  

上恒成立上的最小值.--------------11分

①當(dāng)時,上單調(diào)遞減,上最小值為,不符合題意,故舍去;               ------------------------12分

②當(dāng)時,令

當(dāng)時,即時,函數(shù)在上遞增,的最小值為;解得.                                       ------------------------13分

當(dāng)時,即時,函數(shù)在上遞減,的最小值為,無解;                                                -----------------------14分

當(dāng)時,即時,函數(shù)在上遞減、在上遞增,所以的最小值為,無解.                ------------------------15分

綜上,所求的取值范圍為.                     ------------------------16分

 

 

 

 

 


同步練習(xí)冊答案