16.已知定義在R上的偶函數(shù).且在[―1.0]上是增函數(shù).給出下面關(guān)于:①是周期函數(shù),②的圖象關(guān)于直線對稱,③在[0.1]上是增函數(shù),④在[1.2]上是減函數(shù),⑤其中正確的命題序號是 .(注:把你認為正確的命題序號都填上) 查看更多

 

題目列表(包括答案和解析)

已知定義在R上的偶函數(shù)f(x)滿足f(x+2)•f(x)=1對于x∈R恒成立,且f(x)>0,則f(119)=
 
;

查看答案和解析>>

12、已知定義在R上的偶函數(shù)f(x),滿足f(x)=-f(4-x),且當(dāng)x∈[2,4)時,f(x)=log2(x-1),則f(2010)+f(2011)的值為( 。

查看答案和解析>>

已知定義在R上的偶函數(shù)f(x)在[0,+∞)上是增函數(shù),且f(ax+1)≤f(x-2)對任意x∈[
1
2
,1]
都成立,則實數(shù)a的取值范圍為( 。
A、[-2,0]
B、[-3,-1]
C、[-5,1]
D、[-2,1)

查看答案和解析>>

已知定義在R上的偶函數(shù)f(x)滿足f(x+2)•f(x)=1對于x∈R恒成立,且f(x)>0,則f(2011)=
1
1

查看答案和解析>>

已知定義在R上的偶函數(shù)g(x)滿足:當(dāng)x≠0時,xg′(x)<0(其中g(shù)′(x)為函數(shù)g(x)的導(dǎo)函數(shù));定義在R上的奇函數(shù)f(x)滿足:f(x+2)=-f(x),在區(qū)間[0,1]上為單調(diào)遞增函數(shù),且函數(shù)y=f(x)在x=-5處的切線方程為y=-6.若關(guān)于x的不等式g[f(x)]≥g(a2-a+4)對x∈[6,10]恒成立,則a的取值范圍是( 。

查看答案和解析>>

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.   14.    15.1:2    16.①②⑤  

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設(shè)∠ACD = α ,∠CDB = β .

.……9分

在△ACD中,由正弦定理得:

    19.(本小題滿分12分)

    解:(1)連結(jié)OP,∵Q為切點,PQOQ,

    由勾股定理有,

    又由已知

    即: 

    化簡得 …………3分

       (2)由,得

    …………6分

    故當(dāng)時,線段PQ長取最小值 …………7分

       (3)設(shè)⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

    即R且R

    故當(dāng)時,,此時b=―2a+3=

    得半徑最最小值時⊙P的方程為…………12分

    20.(本小題滿分12分)

    解:(I)取PD的中點G,連結(jié)FG、AG,則

    1. <thead id="mchgz"></thead>

        <legend id="mchgz"><option id="mchgz"><acronym id="mchgz"></acronym></option></legend><thead id="mchgz"><strong id="mchgz"><blockquote id="mchgz"></blockquote></strong></thead>

        又E為AB的中點

        ∴四邊形AEFG為平行四邊形  …………3分

        ∴EF∥AG

        又AG平面PAD

        ∴EF∥平面PAD …………5分

           (II)∵PA⊥平面ABCD

        ∴PA⊥AE

        又矩形ABCD中AE⊥AD

        ∴AE⊥平面PAD

        ∴AE⊥AG

        ∴AE⊥EF

        又AE//CD

        ∴ED⊥CD  …………8分

        又∵PA=AD

        ∴在Rt△PAE和Rt△CBE中PE=CE

        ∵D為PC的中點

        ∴EF⊥PC …………10分

        又PC∩CD=C

        ∴EF⊥平面PCD

        又EF平面PEC

        ∴平面PEC⊥平面PCD  …………12分

         

         

        22.(本小題滿分12分)

        解:(I)

        單調(diào)遞增。 …………2分

        ,不等式無解;

        ;

        ;

        所以  …………6分

           (II), …………8分

                                 ……………11分

        因為對一切……12分

        22.(本小題滿分14分)

        解:(I)

           (II)…………7分

           (III)令上是增函數(shù)

         

         

         


        同步練習(xí)冊答案

        <tt id="mchgz"><optgroup id="mchgz"></optgroup></tt>