(I)求函數(shù)上的最小值, 查看更多

 

題目列表(包括答案和解析)

 

一、選擇題:本大題共12個小題,每小題5分,共60分。

1―5 BCBAB    6―10 DCCCD    11―12 DB

二、填空題:本大題共4個小題,每小題4分,共16分。

13.   14.    15.1:2    16.①②⑤  

20090203

17.(本小題滿分12分)

    解:(I)共線

   

     ………………3分

    故 …………6分

   (II)

   

      …………12分

18.(本小題滿分12分)

解:根據(jù)題意得圖02,其中BC=31千米,BD=20千米,CD=21千米,

∠CAB=60˚.設∠ACD = α ,∠CDB = β .

.……9分

在△ACD中,由正弦定理得:

19.(本小題滿分12分)

解:(1)連結OP,∵Q為切點,PQOQ,

由勾股定理有,

又由已知

即: 

化簡得 …………3分

   (2)由,得

…………6分

故當時,線段PQ長取最小值 …………7分

   (3)設⊙P的半徑為R,∵⊙P與⊙O有公共點,⊙O的半徑為1,

即R且R

故當時,,此時b=―2a+3=

得半徑最最小值時⊙P的方程為…………12分

20.(本小題滿分12分)

解:(I)取PD的中點G,連結FG、AG,則

    又E為AB的中點

    ∴四邊形AEFG為平行四邊形  …………3分

    ∴EF∥AG

    又AG平面PAD

    ∴EF∥平面PAD …………5分

       (II)∵PA⊥平面ABCD

    ∴PA⊥AE

    又矩形ABCD中AE⊥AD

    ∴AE⊥平面PAD

    ∴AE⊥AG

    ∴AE⊥EF

    又AE//CD

    ∴ED⊥CD  …………8分

    又∵PA=AD

    ∴在Rt△PAE和Rt△CBE中PE=CE

    ∵D為PC的中點

    ∴EF⊥PC …………10分

    又PC∩CD=C

    ∴EF⊥平面PCD

    又EF平面PEC

    ∴平面PEC⊥平面PCD  …………12分

     

     

    22.(本小題滿分12分)

    解:(I)

    單調遞增。 …………2分

    ,不等式無解;

    ;

    ;

    所以  …………6分

       (II), …………8分

                             ……………11分

    因為對一切……12分

    22.(本小題滿分14分)

    解:(I)

       (II)…………7分

       (III)令上是增函數(shù)

     

     

     


    同步練習冊答案