由平面幾何的知識(shí)可知.∴.-- 查看更多

 

題目列表(包括答案和解析)

由舊知引新知,溫故而知新,推陳出新,這便是數(shù)學(xué)中的類(lèi)比.平面幾何中的許多內(nèi)容可以通過(guò)類(lèi)比推廣到空間,這里首先就要將平面直角坐標(biāo)系推廣到空間直角坐標(biāo)系.你已經(jīng)學(xué)習(xí)了立體幾何初步的一些知識(shí),你能舉出一些由平面幾何探究空間問(wèn)題的例子、思想或方法嗎?

查看答案和解析>>

如圖所示,OA、OB、OC為不共面的三條射線(xiàn),點(diǎn)A1B1、C1分別是OAOB、OC上的點(diǎn),且成立.

求證:△A1B1C1∽△ABC.

[分析] 由初中所學(xué)平面幾何知識(shí),可證明兩內(nèi)角對(duì)應(yīng)相等,進(jìn)而證明兩個(gè)三角形相似.

查看答案和解析>>

我國(guó)齊梁時(shí)代的數(shù)學(xué)家祖暅(公元5-6世紀(jì))提出了一條原理:“冪勢(shì)既同,則積不容異.”這句話(huà)的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任何平面所截,如果截得的兩個(gè)截面的面積總是相等,那么這兩個(gè)幾何體的體積相等.

設(shè):由曲線(xiàn)和直線(xiàn),所圍成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為;由同時(shí)滿(mǎn)足,,,的點(diǎn)構(gòu)成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為.根據(jù)祖暅原理等知識(shí),通過(guò)考察可以得到的體積為            

 

查看答案和解析>>

我國(guó)齊梁時(shí)代的數(shù)學(xué)家祖暅(公元5-6世紀(jì))提出了一條原理:“冪勢(shì)既同,則積不容異.”這句話(huà)的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任何平面所截,如果截得的兩個(gè)截面的面積總是相等,那么這兩個(gè)幾何體的體積相等.
設(shè):由曲線(xiàn)和直線(xiàn),所圍成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為;由同時(shí)滿(mǎn)足,,,的點(diǎn)構(gòu)成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為.根據(jù)祖暅原理等知識(shí),通過(guò)考察可以得到的體積為            

查看答案和解析>>

我國(guó)齊梁時(shí)代的數(shù)學(xué)家祖暅(公元5-6世紀(jì))提出了一條原理:“冪勢(shì)既同,則積不容異.”這句話(huà)的意思是:夾在兩個(gè)平行平面間的兩個(gè)幾何體,被平行于這兩個(gè)平行平面的任何平面所截,如果截得的兩個(gè)截面的面積總是相等,那么這兩個(gè)幾何體的體積相等.
設(shè):由曲線(xiàn)和直線(xiàn),所圍成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為;由同時(shí)滿(mǎn)足,,的點(diǎn)構(gòu)成的平面圖形,繞軸旋轉(zhuǎn)一周所得到的旋轉(zhuǎn)體為.根據(jù)祖暅原理等知識(shí),通過(guò)考察可以得到的體積為            

查看答案和解析>>


同步練習(xí)冊(cè)答案