20. 如圖,過(guò)拋物線(xiàn)x2=4y的對(duì)稱(chēng)軸上任一點(diǎn)P作直線(xiàn)與拋物線(xiàn)交于A.B兩點(diǎn).點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的對(duì)稱(chēng)點(diǎn). 查看更多

 

題目列表(包括答案和解析)

(本小題滿(mǎn)分14分)

如圖,過(guò)拋物線(xiàn)上一點(diǎn)P(),作兩條直線(xiàn)分別交拋物線(xiàn)于A(),B().直線(xiàn)PA與PB的斜率存在且互為相反數(shù),(1)求的值,(2)證明直線(xiàn)AB的斜率是非零常數(shù).

 

查看答案和解析>>

(本小題滿(mǎn)分14分)如圖所示,橢圓的離心率為,且A(0,1)是橢圓C的頂點(diǎn)。       

(1)求橢圓C的方程;

(2)過(guò)點(diǎn)A作斜率為1的直線(xiàn),設(shè)以橢圓C的右焦點(diǎn)F為拋物線(xiàn)的焦點(diǎn),若點(diǎn)M為拋物線(xiàn)E上任意一點(diǎn),求點(diǎn)M到直線(xiàn)距離的最小值。

 

 

 

 

查看答案和解析>>

(本小題滿(mǎn)分14分)

    如圖,已知直線(xiàn)與拋物線(xiàn)相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0)。

   (1)若動(dòng)點(diǎn)M滿(mǎn)足,求動(dòng)點(diǎn)M的軌跡C的方程;

   (2)若過(guò)點(diǎn)B的直線(xiàn)(斜率不等于零)與(1)中的軌跡C交于不同

的兩點(diǎn)E、F(E在B、F之間),且,試求的取值范圍。

查看答案和解析>>

(本小題滿(mǎn)分14分)

    如圖,已知直線(xiàn)與拋物線(xiàn)相切于點(diǎn)P(2,1),且與x軸交于點(diǎn)A,O為坐標(biāo)原點(diǎn),定點(diǎn)B的坐標(biāo)為(2,0)。

   (1)若動(dòng)點(diǎn)M滿(mǎn)足,求動(dòng)點(diǎn)M的軌跡C的方程;

   (2)若過(guò)點(diǎn)B的直線(xiàn)(斜率不等于零)與(1)中的軌跡C交于不同

的兩點(diǎn)E、F(E在B、F之間),且,試求的取值范圍。

查看答案和解析>>

(本小題滿(mǎn)分14分)

如圖:過(guò)拋物線(xiàn)上的點(diǎn)A(1,2)作切線(xiàn)軸與直線(xiàn)分別于D,B. 動(dòng)點(diǎn)P是拋物線(xiàn)上的一點(diǎn),點(diǎn)E在線(xiàn)段AP上,滿(mǎn)足;點(diǎn)F在線(xiàn)段BP上,滿(mǎn)足,且在中,線(xiàn)段PD與EF交于點(diǎn)Q.

(1)求點(diǎn)Q的軌跡方程;

(2)若M,N是直線(xiàn) 上的兩點(diǎn),且

的內(nèi)切圓,

試求面積的取值范圍。

查看答案和解析>>

 

一、選擇題:

題號(hào)

1

2

3

4

5

6

7

8

9

10

答案

C

A

B

B

C

D

C

D

B

A

二、填空題:

11.  (-∞,0)∪(2,+∞),   (2,+∞)  (第一空3分,第二空2分)

12.         13.  π     14.  (1,e), e (第一空3分,第二空2分)

三、解答題(共80分)解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟.

15、解:(1)等差數(shù)列,公差

       

                        ………………………………………………………4分

(2)         ………………………………………………………6分

       

…………………8分

                  ……………………………10分

           

.            ………………………………………………………12分

16、解:(1)共有種結(jié)果;      ………………………………………………………4分

(2)共有12種結(jié)果;             ………………………………………………………8分

(3).                 ………………………………………………………12分

 

 

17、解:(1),    

     ………………………………………………………2分

   ………………………………………………………4分

      ………………………………………………………6分

   或  

 或

*所求解集為  ………………………………………8分

(2)

            …………………………………………………………………10分

的增區(qū)間為

   ………………………………………………………12分

         

原函數(shù)增區(qū)間為     ………………………………………14分

 

18、(1)證明:連結(jié)、交于點(diǎn),再連結(jié)………………………………………………1分

學(xué)科網(wǎng)(Zxxk.Com), 又,

四邊形是平行四邊形,…………… 3分

   ……………………………… 4分

 

(2)證明:底面是菱形,   ………… 5分

   又,

   ,      ………………………………………………6分

           ………………………………………………8分

(3)延長(zhǎng)、交于點(diǎn)                ………………………………………………9分

的中點(diǎn)且是菱形

      ……………………………………………………10分

由三垂線(xiàn)定理可知    

為所求角        …………………………………………………………12分

在菱形中,       

           …………………………………………………………14分

19、解:         …………………………………………………………2分

(1)由題意:  ……………………………………………………4分

         解得            …………………………………………………………6分

      所求解析式為

(2)由(1)可得:

           令,得……………………………………………8分

    當(dāng)變化時(shí),、的變化情況如下表:

單調(diào)遞增ㄊ

單調(diào)遞減ㄋ

單調(diào)遞增ㄊ

因此,當(dāng)時(shí),有極大值…………………9分

學(xué)科網(wǎng)(Zxxk.Com) 當(dāng)時(shí),有極小值…………………10分

函數(shù)的圖象大致如圖:……13分                               y=k

由圖可知:………………………14分

 

 

20、解(Ⅰ)依題意,可設(shè)直線(xiàn)AB的方程為,

代入拋物線(xiàn)方程得: …………… ①       …………………2分

設(shè)A、B兩點(diǎn)的坐標(biāo)分別是(x1,y1)、(x2,y2),則x1、x2是方程①的兩根.

學(xué)科網(wǎng)(Zxxk.Com)所以

由點(diǎn)P(0,m)分有向線(xiàn)段所成的比為,

 得, 即…………………4分

又點(diǎn)Q是點(diǎn)P關(guān)于原點(diǎn)的以稱(chēng)點(diǎn),

故點(diǎn)Q的坐標(biāo)是(0,--m),從而

          =

                =

               =

               =

               =0,

     所以…………………………………………………………………………7分

 (Ⅱ) 由得點(diǎn)A、B的坐標(biāo)分別是(6,9)、(--4,4).

     由

  所以?huà)佄锞(xiàn)在點(diǎn)A處切線(xiàn)的斜率為.……………………………………………9分

 設(shè)圓C的方程是,

 則  ……………………………………………………11分

  解之得  ………………………………………13分

    所以圓C的方程是.………………………………………………14分

 

 

 

 


同步練習(xí)冊(cè)答案