(1)證明:“若A.B滿足.則 為定值 是真命題,中的逆命題是否成立?證明你的結(jié)論. 查看更多

 

題目列表(包括答案和解析)

已知定義在正實(shí)數(shù)集R上的函數(shù)y=f(x)滿足:①對(duì)任意a,b∈R都有f(a•b)=f(a)+f(b)②當(dāng)x>1時(shí),f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)證明函數(shù)y=f(x)在R上為單調(diào)減函數(shù)
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(
p
q
)+
1
2
=0,p,q∈R+},問是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在則說明理由.

查看答案和解析>>

已知定義在正實(shí)數(shù)集R上的函數(shù)y=f(x)滿足:①對(duì)任意a,b∈R都有f(a•b)=f(a)+f(b)②當(dāng)x>1時(shí),f(x)<0  ③f(3)=-1
(1)求f(1)的值
(2)證明函數(shù)y=f(x)在R上為單調(diào)減函數(shù)
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f(數(shù)學(xué)公式)+數(shù)學(xué)公式=0,p,q∈R+},問是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在則說明理由.

查看答案和解析>>

已知定義在正實(shí)數(shù)集R上的函數(shù)y=f(x)滿足:①對(duì)任意a,b∈R都有f=f(a)+f(b)②當(dāng)x>1時(shí),f(x)<0   ③f(3)=-1
(1)求f(1)的值
(2)證明函數(shù)y=f(x)在R上為單調(diào)減函數(shù)
(3)若集合A={(p,q)|f(p2+1)-f(5q)-2>0,p,q∈R+},集合B={(p,q)|f()+=0,p,q∈R+},問是否存在p,q,使A∩B≠∅,若存在,求出p,q的值,不存在則說明理由.

查看答案和解析>>

設(shè)A,B為橢圓的兩個(gè)動(dòng)點(diǎn),O為坐標(biāo)原點(diǎn).

(1)證明:“若A,B滿足,則為定值”是真命題;

(2)(1)中的逆命題是否成立?證明你的結(jié)論.

查看答案和解析>>

已知f(x)=a2x-
1
2
x3,x∈(-2,2)為正常數(shù).
(1)可以證明:定理“若a、b∈R*,則
a+b
2
ab
(當(dāng)且僅當(dāng)a=b時(shí)取等號(hào))”推廣到三個(gè)正數(shù)時(shí)結(jié)論是正確的,試寫出推廣后的結(jié)論(無需證明);
(2)若f(x)>0在(0,2)上恒成立,且函數(shù)f(x)的最大值大于1,求實(shí)數(shù)a的取值范圍,并由此猜測y=f(x)的單調(diào)性(無需證明);
(3)對(duì)滿足(2)的條件的一個(gè)常數(shù)a,設(shè)x=x1時(shí),f(x)取得最大值.試構(gòu)造一個(gè)定義在D={x|x>-2,且x≠4k-2,k∈N}上的函數(shù)g(x),使當(dāng)x∈(-2,2)時(shí),g(x)=f(x),當(dāng)x∈D時(shí),g(x)取得最大值的自變量的值構(gòu)成以x1為首項(xiàng)的等差數(shù)列.

查看答案和解析>>

又EG∩FG=G,∴面EFG//面BCO,∵EF面EFG,∴EF//面OBC!6分

(2)易求得  ….8分

設(shè)CF的延長線交OA的延長線于P,BE的延長線交OA的延長線于Q

同理,直線OB的方程為,

+

②當(dāng)直線OA.OB的斜率有一條存在另一條不存在時(shí),

,也成立。        …………6分

(2)(1)的逆命題是:若為定值,則   …7分

它是假命題  ….8分

 

 


同步練習(xí)冊(cè)答案