題目列表(包括答案和解析)
(本小題滿分12分)過拋物線y2=2px(p>0)的焦點F的直線與拋物線交于A、B兩點,O為坐標(biāo)原點,直線OA 的斜率為,直線OB的斜率為.
(1)求·的值;
(2)由A、B兩點向準(zhǔn)線做垂線,垂足分別為、,求的大。
(本小題滿分12分)
如圖,過拋物線的對稱軸上任一點作直線與拋物線交于兩點,點是點關(guān)于原點的對稱點.
(1)設(shè)點分有向線段所成的比為λ,證明;
(2)設(shè)直線的方程是,過兩點的圓與
拋物線在點處有共同的切線,求圓的方程.
(本小題滿分12分)已知是x,y軸正方向的單位向量,設(shè), 且滿足
(1)、求點P(x,y)的軌跡E的方程.
(2)、若直線過點且法向量為,直線與軌跡E交于兩點.點,無論直線繞點怎樣轉(zhuǎn)動, 是否為定值?如果是,求出定值;如果不是,請說明理由.并求實數(shù)的取值范圍;
(本小題滿分12分)設(shè)向量,點為動點,已知。
(1)求點的軌跡方程;
(2)設(shè)點的軌跡與軸負(fù)半軸交于點,過點的直線交點的軌跡于、兩點,試推斷的面積是否存在最大值?若存在,求其最大值;若不存在,請說明理由。
一、選擇題:
1.B 2.C 3.B 4.A 5.A 6.B 7.D 8.D 9.C 10.D 11.C 12.B
二、填空題:
13.{2,3,4} 14. 15. 16.①②④
三.17解:解: 所在的直線的斜率為=,………………(2分)
設(shè)直線的斜率為 …………………………………………………(4分)
∴直線的方程為:, …………………………………………………(6分)
即 ………………………………………………………………………(8分)
直線與坐標(biāo)軸的交點坐標(biāo)為…………………………………………(10分)
∴直線與坐標(biāo)軸圍成的三角形的面積……………………(12分)
18.解:(1)∵AE∶EB=AH∶HD,∴EH//BD,CF∶FB=CG∶GD,
∴FG//BD,∴EH//FG, …………………………………………………(2分)
∵,∴,
同理,∴EH=FG
∴EHFG
故四邊形EFGH為平行四邊形. …………………(6分)
(2) ∵AE∶EB= CF∶FB,∴EF//AC,
又∵AC⊥BD,∴∠FEH是AC與BD所成的角,………………………(10分)
∴∠FEH=,從而EFGH為矩形,∴EG=FH. ………………………………(12分)
19.解:解:(1)直觀圖如圖:
…………………………………………………(6分)
(2)三棱錐底面是斜邊為
其體積為V= ………………………………(12分)
20.解: (1)設(shè)每輛車的月租金定為x元,則租賃公司的月收益為:
=(100-)(x-150)-×50,…………………(4分)
整理得:=-+162x-21000 …………………………………………………(6分)
(2)每輛車的月租金為元…………………………………(8分)
時,元
當(dāng)租出了88輛車時,租賃公司的月收益303000元. ………………………………(12分)
21.解:點的坐標(biāo)為∠的平分線與邊上的高所在直線的交點的坐標(biāo),即
,解得,點的坐標(biāo)為 …………………………(4分)
直線的方程為,即: ………………………(6分)
點關(guān)于的對稱點的坐標(biāo)為,則
,解得,即………………………………………(8分)
直線的方程為: ……………………………………………………(10分)
的坐標(biāo)是與交點的坐標(biāo):
,解得,所以的坐標(biāo) …………………………(12分)
22.解:(1)∵ AB⊥平面BCD 平面ABC⊥平面BCD CD⊥平面ABC
AB 平面ABC ∠BCD=900
又∵EF∥CD ……………………………(4分)
EF⊥平面ABC, ∴平面BEF⊥平面ABC………………(6分)
(2)平面BEF⊥平面ACD
AC⊥EF AC⊥平面BEF, ∴AC⊥BE………(8分)
平面BEF∩平面ACD=EF
在Rt△BCD中,BD=,
在Rt△ABD中,AB=?tan60°= ……………………………………(10分)
在Rt△ABC中,AC= , ∴………………(12分)
∴ ,
即時,平面DEF⊥平面ACD. ……………………………………(14分)
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com