5.設(shè)A.B是x軸上的兩點(diǎn).點(diǎn)P的橫坐標(biāo)為2.且.若直線PA的方程為 查看更多

 

題目列表(包括答案和解析)

3、設(shè)A、B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2,且|PA|=|PB|,若直線PA的方程為x-y+1=0,則直線PB的方程是(  )

查看答案和解析>>

設(shè)A、B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2且|PA|=|PB|.若直線PA的方程為x-y-1=0,則直線PB的方程是( 。

查看答案和解析>>

設(shè)A、B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2,且.若直線PA的

方程為,則直線PB的方程是(     )

A.       B.   

C.         D.

 

查看答案和解析>>

設(shè)A、B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2且,若直線PA的方程為,則直線PB的方程是(   )

A.        B.   

C.        D.

 

查看答案和解析>>

設(shè)A、B是x軸上的兩點(diǎn),點(diǎn)P的橫坐標(biāo)為2且|PA|=|PB|.若直線PA的方程為x-y-1=0,則直線PB的方程是(  )
A.2x-y-1=0B.x+y-5=0C.2x-y-4=0D.x+y-7=0

查看答案和解析>>

一、選擇題(每題5分,共60分)

1―5 ACCBA  6―10 BCABD  11―12 DB

2,4,6

13.   14.   15.   16.①②③

三、解答題(17―21題每小題12分,22題14分,共74分)

17.解:(Ⅰ)

(Ⅱ)

當(dāng)且僅當(dāng)時(shí),△ABC面積取最大值,最大值為.

18.解:(Ⅰ)依題意得

(Ⅱ)

19.解法一:(Ⅰ)平面ACE.   

∵二面角D―AB―E為直二面角,且平面ABE.

(Ⅱ)連結(jié)BD交AC于C,連結(jié)FG,

∵正方形ABCD邊長(zhǎng)為2,∴BG⊥AC,BG=,

平面ACE,

(Ⅲ)過(guò)點(diǎn)E作交AB于點(diǎn)O. OE=1.

∵二面角D―AB―E為直二面角,∴EO⊥平面ABCD.

設(shè)D到平面ACE的距離為h,

平面BCE, 

解法二:(Ⅰ)同解法一.

(Ⅱ)以線段AB的中點(diǎn)為原點(diǎn)O,OE所在直

線為x軸,AB所在直線為y軸,過(guò)O點(diǎn)平行

于AD的直線為z軸,建立空間直角坐標(biāo)系

O―xyz,如圖.

面BCE,BE面BCE, ,

的中點(diǎn),

 設(shè)平面AEC的一個(gè)法向量為,

解得

       令是平面AEC的一個(gè)法向量.

       又平面BAC的一個(gè)法向量為,

       ∴二面角B―AC―E的大小為

(III)∵AD//z軸,AD=2,∴,

∴點(diǎn)D到平面ACE的距離

20.解:(1)

;

(2)

,

,有最大值;即每年建造12艘船,年利潤(rùn)最大(8分)

(3),(11分)

所以,當(dāng)時(shí),單調(diào)遞減,所以單調(diào)區(qū)間是,且

21.解:(I)∵,且

①④

又由在處取得極小值-2可知②且

將①②③式聯(lián)立得。   (4分)

同理由

的單調(diào)遞減區(qū)間是[-1,1], 單調(diào)遞增區(qū)間是(-∞,1   (6分)

(II)由上問(wèn)知:,∴。

又∵!!!

,∴>0!。(8分)

∴當(dāng)時(shí),的解集是,

顯然A不成立,不滿足題意。

,且的解集是。   (10分)

又由A。解得。(12分)

22.解:(1)設(shè)M(x,y)是所求曲線上的任意一點(diǎn),Px1y1)是方程x2 +y2 =4的圓上的任意一點(diǎn),則

    則有:得,

    軌跡C的方程為

   (1)當(dāng)直線l的斜率不存在時(shí),與橢圓無(wú)交點(diǎn).

    所以設(shè)直線l的方程為y = k(x+2),與橢圓交于A(x1y1)、B(x2y2)兩點(diǎn),N點(diǎn)所在直線方程為

    由

    由△=

    即 …   

    ,∴四邊形OANB為平行四邊形

    假設(shè)存在矩形OANB,則,即,

    即,

    于是有    得 … 設(shè),

即點(diǎn)N在直線上.

 ∴存在直線l使四邊形OANB為矩形,直線l的方程為

 

 

 

 


同步練習(xí)冊(cè)答案