對(duì)任意兩個(gè)集合M.N.定義:..設(shè)..則 . 查看更多

 

題目列表(包括答案和解析)

對(duì)任意兩個(gè)集合M、N,定義:M-N={x|x∈M且x不屬于N},M*N=(M-N)∪(N-M),設(shè)M={y|y=x2,x∈R},N={y|y=3sinx,x∈R},則M*N=( 。

查看答案和解析>>

(信息遷移題)對(duì)于任意兩個(gè)正數(shù)m、n,定義某種運(yùn)算(用表示運(yùn)算符號(hào)):當(dāng)m、n都是正偶數(shù)或都是正奇數(shù)時(shí),mn=m+n,如46=4+6=10,37=3+7=10;當(dāng)m、n中有一個(gè)為正奇數(shù),另一個(gè)為正偶數(shù)時(shí),mn=mn,如34=3×4=12,43=4×3=12.則在上述定義下,集合M={(a,b)|ab=36,a、b∈N*}中的元素個(gè)數(shù)是多少?

查看答案和解析>>

精英家教網(wǎng)如圖揭示了一個(gè)由區(qū)間(0,1)到實(shí)數(shù)集R上的對(duì)應(yīng)過(guò)程:區(qū)間(0,1)內(nèi)的任意實(shí)數(shù)m與數(shù)軸上的線段AB(不包括端點(diǎn))上的點(diǎn)M一一對(duì)應(yīng)(圖一),將線段AB圍成一個(gè)圓,使兩端A,B恰好重合(圖二),再將這個(gè)圓放在平面直角坐標(biāo)系中,使其圓心在y軸上,點(diǎn)A的坐標(biāo)為(0,1)(圖三).圖三中直線AM與x軸交于點(diǎn)N(n,0),由此得到一個(gè)函數(shù)n=f(m),則下列命題中正確的序號(hào)是( 。
(1)f(
1
2
)=0;     
(2)f(x)是偶函數(shù);   
(3)f(x)在其定義域上是增函數(shù);
(4)y=f(x)的圖象關(guān)于點(diǎn)(
1
2
,0)對(duì)稱.
A、(1)(3)(4)
B、(1)(2)(3)
C、(1)(2)(4)
D、(1)(2)(3)(4)

查看答案和解析>>

我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意均滿足,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)給定兩個(gè)函數(shù):,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
(3)試?yán)茫?)的結(jié)論解決下列問(wèn)題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

我們將具有下列性質(zhì)的所有函數(shù)組成集合M:函數(shù)y=f(x)(x∈D),對(duì)任意均滿足,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立.
(1)若定義在(0,+∞)上的函數(shù)f(x)∈M,試比較f(3)+f(5)與2f(4)大。
(2)給定兩個(gè)函數(shù):,f2(x)=logax(a>1,x>0).證明:f1(x)∉M,f2(x)∈M.
(3)試?yán)茫?)的結(jié)論解決下列問(wèn)題:若實(shí)數(shù)m、n滿足2m+2n=1,求m+n的最大值.

查看答案和解析>>

一.BCAAC      DAAAC

 

二.11.5  12.0。保.(4,12)14.[-3,0)∪(3,+∞) 15①②③

三.16解:(1)由正弦定理有:;。。。。。(2分)

    ∴,;。。。。。。。。。。。。。(4分)

                          。。。。。。。。。。。。。。。。。。。(7分)

(2)由;。。。。。。。。。。。。。。。。。。。。。。(8分)

;。。。。。。。。(10分)∴。。。。。。。。。。。。。(12分)

 

17。解:(Ⅰ)由題意可知    數(shù)列是等差數(shù)列  ………(2分)

,

當(dāng)時(shí),

兩式相減,得      ………………………(4分)

時(shí)也成立

的通項(xiàng)公式為:     ………………………………(6分)

(Ⅱ)由前項(xiàng)和公式得

當(dāng)時(shí),………………………………………(8分)

最大, 則有 ,解得 …………………………….(12分)

18。解:(Ⅰ)當(dāng)時(shí),,.

         . ……………………………………… 2分

         ∵ ,

    解得 .

∴ 當(dāng)時(shí),使不等式成立的x的取值范圍是

.…………………………………………… 5分

      (Ⅱ)∵ ,…… 8分

            ∴ 當(dāng)m<0時(shí),;

               當(dāng)m=0時(shí), ;

               當(dāng)時(shí),;

               當(dāng)m=1時(shí),;

               當(dāng)m>1時(shí),.  .............................................12

19。解:設(shè)對(duì)甲廠投入x萬(wàn)元(0≤x≤c),則對(duì)乙廠投入為c―x萬(wàn)元.所得利潤(rùn)為

y=x+40(0≤x≤c) ……………………(3分)

=t(0≤t≤),則x=c-t2

∴y=f(t)=-t2+40t+c=-(t―20)2+c+400……………………(6分)

當(dāng)≥20,即c≥400時(shí),則t=20, 即x=c―400時(shí), ymax =c+400… (8分)

當(dāng)0<<20, 即0<c<400時(shí),則t=,即x=0時(shí),ymax=40 .…(10分)

答:若政府投資c不少于400萬(wàn)元時(shí),應(yīng)對(duì)甲投入c―400萬(wàn)元, 乙對(duì)投入400萬(wàn)元,可獲得最大利潤(rùn)c+400萬(wàn)元.政府投資c小于400萬(wàn)元時(shí),應(yīng)對(duì)甲不投入,的把全部資金c都投入乙商品可獲得最大利潤(rùn)40萬(wàn)元.…(12分)

20。解:(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

∴a=1,b=c=,

故C的方程為:y2+=1      ………………………………………(5分)

(2)由=λ得-=λ(-),(1+λ)=+λ,

∴λ+1=4,λ=3             ………………………………………………(7分)

設(shè)l與橢圓C交點(diǎn)為A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

x1+x2=, x1x2=   ………………………………………………(9分)

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2-k2-2=0   ………………………………………………(11)分

 

m2=時(shí),上式不成立;m2≠時(shí),k2=,                                  

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗(yàn)證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)     ………………………(13分)

21. 解:(Ⅰ)易知0是f(x)-x=0的根………………………(1分)

                           0<(x)=+sinx≤<1………..(3分)

            ∴f(x)∈M…………………………………………………(4分)

 

Ⅱ)假設(shè)存在兩個(gè)實(shí)根,則,不妨設(shè),由題知存在實(shí)數(shù),使得成立!,,∴

與已知矛盾,所以方程只有一個(gè)實(shí)數(shù)根……………………(8分)

(Ⅲ) 不妨設(shè),∵,∴為增函數(shù),∴,又∵∴函數(shù)為減函數(shù),∴,………………….(10分)

,即,……..(12分)

….(14分)

 


同步練習(xí)冊(cè)答案