橢圓C的中心為坐標原點O.焦點在y軸上.離心率e = .橢圓上的點到焦點的最短距離為1-e, 直線l與y軸交于點P(0.m).與橢圓C交于相異兩點A.B.且. 查看更多

 

題目列表(包括答案和解析)

(本小題滿分13分)

已知橢圓C中心在原點,焦點在軸上,焦距為,短軸長為

    (Ⅰ)求橢圓C的標準方程;

(Ⅱ)若直線與橢圓交于不同的兩點不是

橢圓的左、右頂點),且以為直徑的圓經(jīng)過橢圓的右頂點

求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

(本小題滿分13分)

已知橢圓C中心在原點,焦點在軸上,焦距為2,短軸長為

(Ⅰ)求橢圓C的標準方程;

(Ⅱ)若直線與橢圓交于不同的兩點不是橢圓的左、右頂點),且以為直徑的圓經(jīng)過橢圓的右頂點

求證:直線過定點,并求出定點的坐標.

查看答案和解析>>

(本小題滿分13分)橢圓C的中心為坐標原點O,焦點在y軸上,短軸長為、離心率為,直線y軸交于點P(0,),與橢圓C交于相異兩點AB,且。

(I)求橢圓方程;

(II)求的取值范圍。

 

 

查看答案和解析>>

(本小題滿分13分)橢圓C的中心為坐標原點O,焦點在y軸上,離心率e = ,橢圓上的點到焦點的最短距離為1-e, 直線l與y軸交于點P(0,m),與橢圓C交于相異兩點A、B,且

(1)求橢圓方程;

(2)若,求m的取值范圍.

 

查看答案和解析>>

(本小題滿分13分)橢圓C的中心為坐標原點O,焦點在y軸上,短軸長為、離心率為,直線y軸交于點P(0,),與橢圓C交于相異兩點A、B,且。

(I)求橢圓方程;

(II)求的取值范圍。

查看答案和解析>>

一.BCAAC      DAAAC

 

二.11.5  12.0 13.(4,12)14.[-3,0)∪(3,+∞)。保耽佗冖

三.16解:(1)由正弦定理有:;。。。。。(2分)

    ∴,;。。。。。。。。。。。。。(4分)

                          。。。。。。。。。。。。。。。。。。。(7分)

(2)由;。。。。。。。。。。。。。。。。。。。。。。(8分)

;。。。。。。。。(10分)∴。。。。。。。。。。。。。(12分)

 

17。解:(Ⅰ)由題意可知    數(shù)列是等差數(shù)列  ………(2分)

時,

兩式相減,得      ………………………(4分)

時也成立

的通項公式為:     ………………………………(6分)

(Ⅱ)由前項和公式得

時,………………………………………(8分)

最大, 則有 ,解得 …………………………….(12分)

18。解:(Ⅰ)當時,,.

         . ……………………………………… 2分

         ∵ ,

    解得 .

∴ 當時,使不等式成立的x的取值范圍是

.…………………………………………… 5分

      (Ⅱ)∵ ,…… 8分

            ∴ 當m<0時,;

               當m=0時,

               當時,;

               當m=1時,;

               當m>1時,.  .............................................12

19。解:設(shè)對甲廠投入x萬元(0≤x≤c),則對乙廠投入為c―x萬元.所得利潤為

y=x+40(0≤x≤c) ……………………(3分)

=t(0≤t≤),則x=c-t2

∴y=f(t)=-t2+40t+c=-(t―20)2+c+400……………………(6分)

≥20,即c≥400時,則t=20, 即x=c―400時, ymax =c+400… (8分)

當0<<20, 即0<c<400時,則t=,即x=0時,ymax=40 .…(10分)

答:若政府投資c不少于400萬元時,應(yīng)對甲投入c―400萬元, 乙對投入400萬元,可獲得最大利潤c+400萬元.政府投資c小于400萬元時,應(yīng)對甲不投入,的把全部資金c都投入乙商品可獲得最大利潤40萬元.…(12分)

20。解:(1)設(shè)C:+=1(a>b>0),設(shè)c>0,c2=a2-b2,由條件知a-c=,=,

∴a=1,b=c=,

故C的方程為:y2+=1      ………………………………………(5分)

(2)由=λ得-=λ(-),(1+λ)=+λ,

∴λ+1=4,λ=3             ………………………………………………(7分)

設(shè)l與橢圓C交點為A(x1,y1),B(x2,y2

得(k2+2)x2+2kmx+(m2-1)=0

Δ=(2km)2-4(k2+2)(m2-1)=4(k2-2m2+2)>0 (*)

x1+x2=, x1x2=   ………………………………………………(9分)

∵=3 ∴-x1=3x2

消去x2,得3(x1+x22+4x1x2=0,∴3()2+4=0

整理得4k2m2+2m2-k2-2=0   ………………………………………………(11)分

 

m2=時,上式不成立;m2≠時,k2=,                                  

因λ=3 ∴k≠0 ∴k2=>0,∴-1<m<- 或 <m<1

容易驗證k2>2m2-2成立,所以(*)成立

即所求m的取值范圍為(-1,-)∪(,1)     ………………………(13分)

21. 解:(Ⅰ)易知0是f(x)-x=0的根………………………(1分)

                           0<(x)=+sinx≤<1………..(3分)

            ∴f(x)∈M…………………………………………………(4分)

 

Ⅱ)假設(shè)存在兩個實根,則,不妨設(shè),由題知存在實數(shù),使得成立。∵,,∴

與已知矛盾,所以方程只有一個實數(shù)根……………………(8分)

(Ⅲ) 不妨設(shè),∵,∴為增函數(shù),∴,又∵∴函數(shù)為減函數(shù),∴,………………….(10分)

,即,……..(12分)

….(14分)

 


同步練習(xí)冊答案