(Ⅰ)令要使有t意義.必須1+x≥0且1-x≥0.即-1≤x≤1, 查看更多

 

題目列表(包括答案和解析)

設(shè)函數(shù)f(x)=-cos2x-4t•sin
x
2
cos
x
2
+2t2-6t+2
(x∈R),其中t∈R,將f(x)的最小值記為g(t).
(1)求g(t)的表達(dá)式;
(2)當(dāng)-1≤t≤1時(shí),要使關(guān)于t的方程g(t)=kt有且僅有一個(gè)實(shí)根,求實(shí)數(shù)k的取值范圍

查看答案和解析>>

如右圖所示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,常數(shù)A,都有f(x)≥A成立,則稱(chēng)函數(shù)f(x)在D上有下界,其中A稱(chēng)為函數(shù)的下界.(提示:圖中的常數(shù)A可以是正數(shù),也可以是負(fù)數(shù)或零)
(1)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說(shuō)明理由;
(2)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

(2007•揭陽(yáng)二模)如圖(1)示,定義在D上的函數(shù)f(x),如果滿足:對(duì)?x∈D,?常數(shù)A,都有f(x)≥A成立,則稱(chēng)函數(shù)f(x)在D上有下界,其中A稱(chēng)為函數(shù)的下界.(提示:圖(1)、(2)中的常數(shù)A、B可以是正數(shù),也可以是負(fù)數(shù)或零)

(Ⅰ)試判斷函數(shù)f(x)=x3+
48
x
在(0,+∞)上是否有下界?并說(shuō)明理由;
(Ⅱ)又如具有如圖(2)特征的函數(shù)稱(chēng)為在D上有上界.請(qǐng)你類(lèi)比函數(shù)有下界的定義,給出函數(shù)f(x)在D上有上界的定義,并判斷(Ⅰ)中的函數(shù)在(-∞,0)上是否有上界?并說(shuō)明理由;
(Ⅲ)已知某質(zhì)點(diǎn)的運(yùn)動(dòng)方程為S(t)=at-2
t+1
,要使在t∈[0,+∞)上的每一時(shí)刻該質(zhì)點(diǎn)的瞬時(shí)速度是以A=
1
2
為下界的函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

定義在D上的函數(shù),如果滿足:存在常數(shù)M>0,對(duì)任意x∈D都有|f(x)|≤M成立,則稱(chēng)f(x)是D上的有界函數(shù).
(1)試判斷函數(shù)f(x)=2sin(x+
π
6
)+3
在實(shí)數(shù)集R上,函數(shù)g(x)=x3+
3
x
[
1
3
,3]
上是不是有界函數(shù)?若是,請(qǐng)給出證明;若不是,請(qǐng)說(shuō)出理由.
(2)若已知某質(zhì)點(diǎn)的運(yùn)動(dòng)距離S與時(shí)間t的關(guān)系為S(t)=
1
4
t4+3lnt-at
,要使在t∈[
1
3
,3]
上每一時(shí)刻的瞬時(shí)速度的絕對(duì)值都不大于13,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

要使有意義,則應(yīng)有(     )

A.m      B.m≥-1         C.m≤-1或m          D.-1≤m

查看答案和解析>>


同步練習(xí)冊(cè)答案