思想方法總結(jié):利用平面直角坐標(biāo)系.把幾何問題轉(zhuǎn)化為代數(shù)問題處理.建立曲線方程的目的就是要用代數(shù)的方法研究幾何問題.本課就是要根據(jù)橢圓的標(biāo)準(zhǔn)方程去研究橢圓的幾何性質(zhì).在以前的學(xué)習(xí)中.我們已經(jīng)接觸到如何通過方程研究幾何問題.例如直線的平行與垂直.函數(shù)奇偶性中函數(shù)解析式的特征與圖象的對稱性的關(guān)系等等.請思考:如何根據(jù)橢圓標(biāo)準(zhǔn)方程研究幾何性質(zhì)? 查看更多

 

題目列表(包括答案和解析)

(2010•臺州一模)我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且法向量為
n
=(1,-2)
的直線(點(diǎn)法式)方程為1×(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0. 類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(3,4,5),且法向量為
n
=(2,1,3)
的平面(點(diǎn)法式)方程為
2x+y+3z-21=0
2x+y+3z-21=0
(請寫出化簡后的結(jié)果).

查看答案和解析>>

我們把在平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系xOy中,利用求動點(diǎn)軌跡方程的方法,可以求出過點(diǎn)A(-3,4),且其法向量為
n
=(1,-2)
的直線方程為1x(x+3)+(-2)×(y-4)=0,化簡得x-2y+11=0.類比上述方法,在空間坐標(biāo)系O-xyz中,經(jīng)過點(diǎn)A(1,2,3),且其法向量為
n
=(-1,-2,1)
的平面方程為
 

查看答案和解析>>

(2012•浙江模擬)平面內(nèi)與直線平行的非零向量稱為直線的方向向量;與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動點(diǎn)的軌跡方程的方法,可以求出過點(diǎn)A(2,1)且法向量為
n
=(-1,2)的直線
(點(diǎn)法式)方程為-(x-2)+2(y-1)=0,化簡后得x-2y=0.類比以上求法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn)A(2,1,3),且法向量為
n
=(-1,2,1)
的平面(點(diǎn)法式)方程為
x-2y-z+3=0
x-2y-z+3=0
(請寫出化簡后的結(jié)果).

查看答案和解析>>

我們把平面內(nèi)與直線垂直的非零向量稱為直線的法向量,在平面直角坐標(biāo)系中,利用求動點(diǎn)軌跡方程的方法,可以求出過點(diǎn),且法向量為的直線(點(diǎn)法式)方程為,化簡得. 類比以上方法,在空間直角坐標(biāo)系中,經(jīng)過點(diǎn),且法向量為的平面(點(diǎn)法式)方程為

    ▲    (請寫出化簡后的結(jié)果).

 

查看答案和解析>>

平面內(nèi)與直線平行的非零向量稱為直線的方向向量,與直線的方向向量垂直的非零向量稱為直線的法向量.在平面直角坐標(biāo)系中,利用求動點(diǎn)軌跡方程的方法,可以求出過點(diǎn)且法向量為的直線(點(diǎn)法式)方程為,化簡后得.則在空間直角坐標(biāo)系中,平面經(jīng)過點(diǎn),且法向量為的平面(點(diǎn)法式)方程化簡后的結(jié)果為        

 

查看答案和解析>>


同步練習(xí)冊答案