3.定點F1.F2與動點M不在平面上.能否得到雙曲線? 查看更多

 

題目列表(包括答案和解析)

定義變換T:可把平面直角坐標系上的點P(x,y)變換到這一平面上的點P′(x′,y′).特別地,若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程.并求出當時,其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標;
(2)當時,求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換T:,k∈Z)下的不動點的存在情況和個數(shù).

查看答案和解析>>

定義變換T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
可把平面直角坐標系上的點P(x,y)變換到這一平面上的點P′(x′,y′).特別地,若曲線M上一點P經(jīng)變換公式T變換后得到的點P'與點P重合,則稱點P是曲線M在變換T下的不動點.
(1)若橢圓C的中心為坐標原點,焦點在x軸上,且焦距為2
2
,長軸頂點和短軸頂點間的距離為2.求該橢圓C的標準方程.并求出當θ=arctan
3
4
時,其兩個焦點F1、F2經(jīng)變換公式T變換后得到的點F1和F2的坐標;
(2)當θ=arctan
3
4
時,求(1)中的橢圓C在變換T下的所有不動點的坐標;
(3)試探究:中心為坐標原點、對稱軸為坐標軸的雙曲線在變換T:
cosθ•x+sinθ•y=x′
′sinθ•x-cosθ•y=y′
θ≠
2
,k∈Z)下的不動點的存在情況和個數(shù).

查看答案和解析>>

(本題滿分14分)

已知如圖,橢圓方程為.P為橢圓上的動點,

F1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角

平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(1)求M點的軌跡T的方程;

(2)已知、,試探究是否存在這樣的點是軌跡T內(nèi)部的整點(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

(本題滿分14分)已知如圖,橢圓方程為.P為橢圓上的動點,

F1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角

平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.

(1)求M點的軌跡T的方程;(2)已知、,

試探究是否存在這樣的點是軌跡T內(nèi)部的整點

(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積?

若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>

(本題滿分14分)已知如圖,橢圓方程為.P為橢圓上的動點,

F1、F2為橢圓的兩焦點,當點P不在x軸上時,過F1作∠F1PF2的外角
平分線的垂線F1M,垂足為M,當點P在x軸上時,定義M與P重合.
(1)求M點的軌跡T的方程;(2)已知、,
試探究是否存在這樣的點是軌跡T內(nèi)部的整點
(平面內(nèi)橫、縱坐標均為整數(shù)的點稱為整點),且△OEQ的面積
若存在,求出點Q的坐標,若不存在,說明理由.

查看答案和解析>>


同步練習冊答案