代入上式并整理得:.教后感想與作業(yè)情況 查看更多

 

題目列表(包括答案和解析)

設橢圓的左、右頂點分別為,點在橢圓上且異于兩點,為坐標原點.

(Ⅰ)若直線的斜率之積為,求橢圓的離心率;

(Ⅱ)若,證明直線的斜率 滿足

【解析】(1)解:設點P的坐標為.由題意,有  ①

,得

,可得,代入①并整理得

由于,故.于是,所以橢圓的離心率

(2)證明:(方法一)

依題意,直線OP的方程為,設點P的坐標為.

由條件得消去并整理得  ②

,,

.

整理得.而,于是,代入②,

整理得

,故,因此.

所以.

(方法二)

依題意,直線OP的方程為,設點P的坐標為.

由P在橢圓上,有

因為,,所以,即   ③

,,得整理得.

于是,代入③,

整理得

解得,

所以.

 

查看答案和解析>>

已知中心在原點O,焦點F1、F2在x軸上的橢圓E經(jīng)過點C(2,2),且拋物線的焦點為F1.

(Ⅰ)求橢圓E的方程;

(Ⅱ)垂直于OC的直線l與橢圓E交于A、B兩點,當以AB為直徑的圓P與y軸相切時,求直線l的方程和圓P的方程.

【解析】本試題主要考查了橢圓的方程的求解以及直線與橢圓的位置關(guān)系的運用。第一問中,設出橢圓的方程,然后結(jié)合拋物線的焦點坐標得到,又因為,這樣可知得到。第二問中設直線l的方程為y=-x+m與橢圓聯(lián)立方程組可以得到

,再利用可以結(jié)合韋達定理求解得到m的值和圓p的方程。

解:(Ⅰ)設橢圓E的方程為

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以橢圓E的方程為…………………………4分

(Ⅱ)依題意,直線OC斜率為1,由此設直線l的方程為y=-x+m,……………5分

 代入橢圓E方程,得…………………………6分

………………………7分

、………………8分

………………………9分

……………………………10分

    當m=3時,直線l方程為y=-x+3,此時,x1 +x2=4,圓心為(2,1),半徑為2,

圓P的方程為(x-2)2+(y-1)2=4;………………………………11分

同理,當m=-3時,直線l方程為y=-x-3,

圓P的方程為(x+2)2+(y+1)2=4

 

查看答案和解析>>

某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此作了四次試驗,得到的數(shù)據(jù)如下:

零件的個數(shù)x(個)

2

3

4

5

加工的時間y(小時)

2.5

3

4

4.5

 

(1)在給定的坐標系中畫出表中數(shù)據(jù)的散點圖;

(2)求出y關(guān)于x的線性回歸方程,并在坐標系中畫出回歸直線;

(3)試預測加工10個零件需要多少時間?

(注:)

【解析】第一問中利用數(shù)據(jù)描繪出散點圖即可

第二問中,由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回歸方程。

第三問中,將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時)得到結(jié)論。

(1)散點圖如下圖.

………………4分

(2)由表中數(shù)據(jù)得=52.5, =3.5,=3.5,=54,

=…=0.7,=…=1.05.

=0.7x+1.05.回歸直線如圖中所示.………………8分

(3)將x=10代入回歸直線方程,得y=0.7×10+1.05=8.05(小時),

∴預測加工10個零件需要8.05小時

 

查看答案和解析>>

牛頓冷卻規(guī)律描述一個物體在常溫環(huán)境下的溫度變化,如果物體的初始溫度為T0,則經(jīng)過一定時間后的溫度T將滿足:TTα=(T0Tα,其中Tα是環(huán)境溫度,使上式成立將需要的時間稱為半衰期.在這樣的情況下,h時間后的溫度T將滿足

TTα=(T0Tα)().                          ①

現(xiàn)有一杯用195熱水沖的速溶咖啡,放置在75的房間中,如果咖啡溫度降到105需20分鐘,問欲降溫到95需要多少時間?

查看答案和解析>>

(本題滿分12分)如圖,已知為平行四邊形,,,,點上,,,于點,現(xiàn)將四邊形沿折起,使點在平面上的射影恰在直線上.

(Ⅰ) 求證:平面;

(Ⅱ) 求折后直線與直線所成角的余弦值;

(Ⅲ) 求三棱錐的體積.

 

 

 

查看答案和解析>>


同步練習冊答案