由此可得,,即線段AB關(guān)于x軸對稱,因為x軸垂直于AB,且 查看更多

 

題目列表(包括答案和解析)

與圓類似,連接圓錐曲線上兩點的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點,且AM,BM均與坐標軸不平行,則kAM•kBM=-1.類比到橢圓
x2
a2
+
y2
b2
=1
,類似結(jié)論是
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點,且AM、BM均與坐標軸不平行,則kAM•kBM=-
b2
a2
若AB是橢圓
x2
a2
+
y2
b2
=1
的直徑,M是橢圓上異于A、B的一點,且AM、BM均與坐標軸不平行,則kAM•kBM=-
b2
a2

查看答案和解析>>

(1)由“若ab=ac(a≠0,a,b,c∈R),則b=c”;類比“若為三個向量),則”;

(2)如果,那么

(3)若回歸直線方程為1.5x+45,x∈{1,5,7,13,19},則=58.5;

(4)當n為正整數(shù)時,函數(shù)N(n)表示n的最大奇因數(shù),如N(3)=3,N(10)=5, ,由此可得函數(shù)N(n)具有性質(zhì):當n為正整數(shù)時,N(2n)= N(n),N(2n-1)=2n-1.

上述四個推理中,得出結(jié)論正確的是           (寫出所有正確結(jié)論的序號).

 

查看答案和解析>>

與圓類似,連接圓錐曲線上兩點的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點,且AM,BM均與坐標軸不平行,則kAM•kBM=-1.類比到橢圓數(shù)學公式,類似結(jié)論是________

查看答案和解析>>

與圓類似,連接圓錐曲線上兩點的線段叫做圓錐曲線的弦.過有心曲線(橢圓、雙曲線)中心(即對稱中心)的弦叫做有心曲線的直徑.對圓x2+y2=r2,由直徑所對的圓周角是直角出發(fā),可得:若AB是圓O的直徑,M是圓O上異于A、B的一點,且AM,BM均與坐標軸不平行,則kAM•kBM=-1.類比到橢圓
x2
a2
+
y2
b2
=1
,類似結(jié)論是______

查看答案和解析>>

已知正數(shù)數(shù)列{an }中,a1 =2.若關(guān)于x的方程 ()對任意自然數(shù)n都有相等的實根.

(1)求a2 ,a3的值;

(2)求證

【解析】(1)中由題意得△,即,進而可得,. 

(2)中由于,所以,因為,所以數(shù)列是以為首項,公比為2的等比數(shù)列,知數(shù)列是以為首項,公比為的等比數(shù)列,利用裂項求和得到不等式的證明。

(1)由題意得△,即,進而可得   

(2)由于,所以,因為,所以數(shù)列是以為首項,公比為2的等比數(shù)列,知數(shù)列是以為首項,公比為的等比數(shù)列,于是

,

所以

 

查看答案和解析>>


同步練習冊答案