解:(1)由題意得:-------3 查看更多

 

題目列表(包括答案和解析)

解析:依題意得f(x)的圖象關于直線x=1對稱,f(x+1)=-f(x-1),f(x+2)=-f(x),f(x+4)=-f(x+2)=f(x),即函數(shù)f(x)是以4為周期的函數(shù).由f(x)在[3,5]上是增函數(shù)與f(x)的圖象關于直線x=1對稱得,f(x)在[-3,-1]上是減函數(shù).又函數(shù)f(x)是以4為周期的函數(shù),因此f(x)在[1,3]上是減函數(shù),f(x)在[1,3]上的最大值是f(1),最小值是f(3).

答案:A

查看答案和解析>>

解答題:解答時應寫出文字說明、證明過程或演算步驟

已知定義在(-1,1)上的函數(shù)f(x)滿足,且對x,y∈(-1,1)時,有

(1)

判斷f(x)在(-1,1)上的奇偶性,并加以證明;

(2)

,求數(shù)列{f(x)}的通項公式;

(3)

設Tn為數(shù)列{}的前n項和,問是否存在正整數(shù)m,使得對任意的n∈N*,有成立?若存在,求出m的最小值,若不存在,則說明理由.

查看答案和解析>>

解答題:解答應寫出文字說明、證明過程或演算步驟.

已知等差數(shù)列{an}中,a1=8,a4=2

(1)

求數(shù)列{an}的通項公式

(2)

設Sn=|a1|+|a2|+…+|an|,求Sn

(3)

(n∈N*),Tn=b1+b2+…+bn,是否存在整數(shù)m,使得對于任意n∈N*均有恒成立,若存在,求m的最大值,若不存在,說明理由

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟

已知函數(shù)f(x)定義在區(qū)間上,,且當時,恒有,又數(shù)列滿足,設

(1)

證明:上為奇函數(shù);

(2)

求f(an)的表達式;

(3)

是否存在正整數(shù)m,使得對任意,都有成立,若存在,求出m的最小值;若不存在,請說明理由

查看答案和解析>>

解答題:解答應寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)=mx3-3(m+1)x2+3(m+2)x+1,其中m∈R.

(Ⅰ)若m<0,求f(x)的單調區(qū)間;

(Ⅱ)在(Ⅰ)的條件下,當x∈[-1,1]時,函數(shù)y=f(x)的圖象上任意一點的切線斜率恒大于3m,求m的取值范圍;

(Ⅲ)設g(x)=mx3-(3m+2)x2+3mx+4lnx+m+1,問是否存在實數(shù)m,使得y=f(x)的圖象與y=g(x)的圖象有且只有兩個不同的交點?若存在,求出m的值;若不存在,說明理由.

查看答案和解析>>


同步練習冊答案