題目列表(包括答案和解析)
第十部分 磁場(chǎng)
第一講 基本知識(shí)介紹
《磁場(chǎng)》部分在奧賽考剛中的考點(diǎn)很少,和高考要求的區(qū)別不是很大,只是在兩處有深化:a、電流的磁場(chǎng)引進(jìn)定量計(jì)算;b、對(duì)帶電粒子在復(fù)合場(chǎng)中的運(yùn)動(dòng)進(jìn)行了更深入的分析。
一、磁場(chǎng)與安培力
1、磁場(chǎng)
a、永磁體、電流磁場(chǎng)→磁現(xiàn)象的電本質(zhì)
b、磁感強(qiáng)度、磁通量
c、穩(wěn)恒電流的磁場(chǎng)
*畢奧-薩伐爾定律(Biot-Savart law):對(duì)于電流強(qiáng)度為I 、長(zhǎng)度為dI的導(dǎo)體元段,在距離為r的點(diǎn)激發(fā)的“元磁感應(yīng)強(qiáng)度”為dB 。矢量式d= k,(d表示導(dǎo)體元段的方向沿電流的方向、為導(dǎo)體元段到考查點(diǎn)的方向矢量);或用大小關(guān)系式dB = k結(jié)合安培定則尋求方向亦可。其中 k = 1.0×10?7N/A2 。應(yīng)用畢薩定律再結(jié)合矢量疊加原理,可以求解任何形狀導(dǎo)線在任何位置激發(fā)的磁感強(qiáng)度。
畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”直導(dǎo)線的結(jié)論:B = 2k ;
*畢薩定律應(yīng)用在環(huán)形電流垂直中心軸線上的結(jié)論:B = 2πkI ;
*畢薩定律應(yīng)用在“無(wú)限長(zhǎng)”螺線管內(nèi)部的結(jié)論:B = 2πknI 。其中n為單位長(zhǎng)度螺線管的匝數(shù)。
2、安培力
a、對(duì)直導(dǎo)體,矢量式為 = I;或表達(dá)為大小關(guān)系式 F = BILsinθ再結(jié)合“左手定則”解決方向問(wèn)題(θ為B與L的夾角)。
b、彎曲導(dǎo)體的安培力
⑴整體合力
折線導(dǎo)體所受安培力的合力等于連接始末端連線導(dǎo)體(電流不變)的的安培力。
證明:參照?qǐng)D9-1,令MN段導(dǎo)體的安培力F1與NO段導(dǎo)體的安培力F2的合力為F,則F的大小為
F =
= BI
= BI
關(guān)于F的方向,由于ΔFF2P∽ΔMNO,可以證明圖9-1中的兩個(gè)灰色三角形相似,這也就證明了F是垂直MO的,再由于ΔPMO是等腰三角形(這個(gè)證明很容易),故F在MO上的垂足就是MO的中點(diǎn)了。
證畢。
由于連續(xù)彎曲的導(dǎo)體可以看成是無(wú)窮多元段直線導(dǎo)體的折合,所以,關(guān)于折線導(dǎo)體整體合力的結(jié)論也適用于彎曲導(dǎo)體。(說(shuō)明:這個(gè)結(jié)論只適用于勻強(qiáng)磁場(chǎng)。)
⑵導(dǎo)體的內(nèi)張力
彎曲導(dǎo)體在平衡或加速的情形下,均會(huì)出現(xiàn)內(nèi)張力,具體分析時(shí),可將導(dǎo)體在被考查點(diǎn)切斷,再將被切斷的某一部分隔離,列平衡方程或動(dòng)力學(xué)方程求解。
c、勻強(qiáng)磁場(chǎng)對(duì)線圈的轉(zhuǎn)矩
如圖9-2所示,當(dāng)一個(gè)矩形線圈(線圈面積為S、通以恒定電流I)放入勻強(qiáng)磁場(chǎng)中,且磁場(chǎng)B的方向平行線圈平面時(shí),線圈受安培力將轉(zhuǎn)動(dòng)(并自動(dòng)選擇垂直B的中心軸OO′,因?yàn)橘|(zhì)心無(wú)加速度),此瞬時(shí)的力矩為
M = BIS
幾種情形的討論——
⑴增加匝數(shù)至N ,則 M = NBIS ;
⑵轉(zhuǎn)軸平移,結(jié)論不變(證明從略);
⑶線圈形狀改變,結(jié)論不變(證明從略);
*⑷磁場(chǎng)平行線圈平面相對(duì)原磁場(chǎng)方向旋轉(zhuǎn)α角,則M = BIScosα ,如圖9-3;
證明:當(dāng)α = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有垂直轉(zhuǎn)軸的的分量Bcosα才能產(chǎn)生力矩…
⑸磁場(chǎng)B垂直O(jiān)O′軸相對(duì)線圈平面旋轉(zhuǎn)β角,則M = BIScosβ ,如圖9-4。
證明:當(dāng)β = 90°時(shí),顯然M = 0 ,而磁場(chǎng)是可以分解的,只有平行線圈平面的的分量Bcosβ才能產(chǎn)生力矩…
說(shuō)明:在默認(rèn)的情況下,討論線圈的轉(zhuǎn)矩時(shí),認(rèn)為線圈的轉(zhuǎn)軸垂直磁場(chǎng)。如果沒(méi)有人為設(shè)定,而是讓安培力自行選定轉(zhuǎn)軸,這時(shí)的力矩稱為力偶矩。
二、洛侖茲力
1、概念與規(guī)律
a、 = q,或展開為f = qvBsinθ再結(jié)合左、右手定則確定方向(其中θ為與的夾角)。安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)。
b、能量性質(zhì)
由于總垂直與確定的平面,故總垂直 ,只能起到改變速度方向的作用。結(jié)論:洛侖茲力可對(duì)帶電粒子形成沖量,卻不可能做功。或:洛侖茲力可使帶電粒子的動(dòng)量發(fā)生改變卻不能使其動(dòng)能發(fā)生改變。
問(wèn)題:安培力可以做功,為什么洛侖茲力不能做功?
解說(shuō):應(yīng)該注意“安培力是大量帶電粒子所受洛侖茲力的宏觀體現(xiàn)”這句話的確切含義——“宏觀體現(xiàn)”和“完全相等”是有區(qū)別的。我們可以分兩種情形看這個(gè)問(wèn)題:(1)導(dǎo)體靜止時(shí),所有粒子的洛侖茲力的合力等于安培力(這個(gè)證明從略);(2)導(dǎo)體運(yùn)動(dòng)時(shí),粒子參與的是沿導(dǎo)體棒的運(yùn)動(dòng)v1和導(dǎo)體運(yùn)動(dòng)v2的合運(yùn)動(dòng),其合速度為v ,這時(shí)的洛侖茲力f垂直v而安培力垂直導(dǎo)體棒,它們是不可能相等的,只能說(shuō)安培力是洛侖茲力的分力f1 = qv1B的合力(見圖9-5)。
很顯然,f1的合力(安培力)做正功,而f不做功(或者說(shuō)f1的正功和f2的負(fù)功的代數(shù)和為零)。(事實(shí)上,由于電子定向移動(dòng)速率v1在10?5m/s數(shù)量級(jí),而v2一般都在10?2m/s數(shù)量級(jí)以上,致使f1只是f的一個(gè)極小分量。)
☆如果從能量的角度看這個(gè)問(wèn)題,當(dāng)導(dǎo)體棒放在光滑的導(dǎo)軌上時(shí)(參看圖9-6),導(dǎo)體棒必獲得動(dòng)能,這個(gè)動(dòng)能是怎么轉(zhuǎn)化來(lái)的呢?
若先將導(dǎo)體棒卡住,回路中形成穩(wěn)恒的電流,電流的功轉(zhuǎn)化為回路的焦耳熱。而將導(dǎo)體棒釋放后,導(dǎo)體棒受安培力加速,將形成感應(yīng)電動(dòng)勢(shì)(反電動(dòng)勢(shì))。動(dòng)力學(xué)分析可知,導(dǎo)體棒的最后穩(wěn)定狀態(tài)是勻速運(yùn)動(dòng)(感應(yīng)電動(dòng)勢(shì)等于電源電動(dòng)勢(shì),回路電流為零)。由于達(dá)到穩(wěn)定速度前的回路電流是逐漸減小的,故在相同時(shí)間內(nèi)發(fā)的焦耳熱將比導(dǎo)體棒被卡住時(shí)少。所以,導(dǎo)體棒動(dòng)能的增加是以回路焦耳熱的減少為代價(jià)的。
2、僅受洛侖茲力的帶電粒子運(yùn)動(dòng)
a、⊥時(shí),勻速圓周運(yùn)動(dòng),半徑r = ,周期T =
b、與成一般夾角θ時(shí),做等螺距螺旋運(yùn)動(dòng),半徑r = ,螺距d =
這個(gè)結(jié)論的證明一般是將分解…(過(guò)程從略)。
☆但也有一個(gè)問(wèn)題,如果將分解(成垂直速度分量B2和平行速度分量B1 ,如圖9-7所示),粒子的運(yùn)動(dòng)情形似乎就不一樣了——在垂直B2的平面內(nèi)做圓周運(yùn)動(dòng)?
其實(shí),在圖9-7中,B1平行v只是一種暫時(shí)的現(xiàn)象,一旦受B2的洛侖茲力作用,v改變方向后就不再平行B1了。當(dāng)B1施加了洛侖茲力后,粒子的“圓周運(yùn)動(dòng)”就無(wú)法達(dá)成了。(而在分解v的處理中,這種局面是不會(huì)出現(xiàn)的。)
3、磁聚焦
a、結(jié)構(gòu):見圖9-8,K和G分別為陰極和控制極,A為陽(yáng)極加共軸限制膜片,螺線管提供勻強(qiáng)磁場(chǎng)。
b、原理:由于控制極和共軸膜片的存在,電子進(jìn)磁場(chǎng)的發(fā)散角極小,即速度和磁場(chǎng)的夾角θ極小,各粒子做螺旋運(yùn)動(dòng)時(shí)可以認(rèn)為螺距彼此相等(半徑可以不等),故所有粒子會(huì)“聚焦”在熒光屏上的P點(diǎn)。
4、回旋加速器
a、結(jié)構(gòu)&原理(注意加速時(shí)間應(yīng)忽略)
b、磁場(chǎng)與交變電場(chǎng)頻率的關(guān)系
因回旋周期T和交變電場(chǎng)周期T′必相等,故 =
c、最大速度 vmax = = 2πRf
5、質(zhì)譜儀
速度選擇器&粒子圓周運(yùn)動(dòng),和高考要求相同。
第二講 典型例題解析
一、磁場(chǎng)與安培力的計(jì)算
【例題1】?jī)筛鶡o(wú)限長(zhǎng)的平行直導(dǎo)線a、b相距40cm,通過(guò)電流的大小都是3.0A,方向相反。試求位于兩根導(dǎo)線之間且在兩導(dǎo)線所在平面內(nèi)的、與a導(dǎo)線相距10cm的P點(diǎn)的磁感強(qiáng)度。
【解說(shuō)】這是一個(gè)關(guān)于畢薩定律的簡(jiǎn)單應(yīng)用。解題過(guò)程從略。
【答案】大小為8.0×10?6T ,方向在圖9-9中垂直紙面向外。
【例題2】半徑為R ,通有電流I的圓形線圈,放在磁感強(qiáng)度大小為B 、方向垂直線圈平面的勻強(qiáng)磁場(chǎng)中,求由于安培力而引起的線圈內(nèi)張力。
【解說(shuō)】本題有兩種解法。
方法一:隔離一小段弧,對(duì)應(yīng)圓心角θ ,則弧長(zhǎng)L = θR 。因?yàn)棣?u> →
第九部分 穩(wěn)恒電流
第一講 基本知識(shí)介紹
第八部分《穩(wěn)恒電流》包括兩大塊:一是“恒定電流”,二是“物質(zhì)的導(dǎo)電性”。前者是對(duì)于電路的外部計(jì)算,后者則是深入微觀空間,去解釋電流的成因和比較不同種類的物質(zhì)導(dǎo)電的情形有什么區(qū)別。
應(yīng)該說(shuō),第一塊的知識(shí)和高考考綱對(duì)應(yīng)得比較好,深化的部分是對(duì)復(fù)雜電路的計(jì)算(引入了一些新的處理手段)。第二塊雖是全新的內(nèi)容,但近幾年的考試已經(jīng)很少涉及,以至于很多奧賽培訓(xùn)資料都把它刪掉了。鑒于在奧賽考綱中這部分內(nèi)容還保留著,我們還是想粗略地介紹一下。
一、歐姆定律
1、電阻定律
a、電阻定律 R = ρ
b、金屬的電阻率 ρ = ρ0(1 + αt)
2、歐姆定律
a、外電路歐姆定律 U = IR ,順著電流方向電勢(shì)降落
b、含源電路歐姆定律
在如圖8-1所示的含源電路中,從A點(diǎn)到B點(diǎn),遵照原則:①遇電阻,順電流方向電勢(shì)降落(逆電流方向電勢(shì)升高)②遇電源,正極到負(fù)極電勢(shì)降落,負(fù)極到正極電勢(shì)升高(與電流方向無(wú)關(guān)),可以得到以下關(guān)系
UA ? IR ? ε ? Ir = UB
這就是含源電路歐姆定律。
c、閉合電路歐姆定律
在圖8-1中,若將A、B兩點(diǎn)短接,則電流方向只可能向左,含源電路歐姆定律成為
UA + IR ? ε + Ir = UB = UA
即 ε = IR + Ir ,或 I =
這就是閉合電路歐姆定律。值得注意的的是:①對(duì)于復(fù)雜電路,“干路電流I”不能做絕對(duì)的理解(任何要考察的一條路均可視為干路);②電源的概念也是相對(duì)的,它可以是多個(gè)電源的串、并聯(lián),也可以是電源和電阻組成的系統(tǒng);③外電阻R可以是多個(gè)電阻的串、并聯(lián)或混聯(lián),但不能包含電源。
二、復(fù)雜電路的計(jì)算
1、戴維南定理:一個(gè)由獨(dú)立源、線性電阻、線性受控源組成的二端網(wǎng)絡(luò),可以用一個(gè)電壓源和電阻串聯(lián)的二端網(wǎng)絡(luò)來(lái)等效。(事實(shí)上,也可等效為“電流源和電阻并聯(lián)的的二端網(wǎng)絡(luò)”——這就成了諾頓定理。)
應(yīng)用方法:其等效電路的電壓源的電動(dòng)勢(shì)等于網(wǎng)絡(luò)的開路電壓,其串聯(lián)電阻等于從端鈕看進(jìn)去該網(wǎng)絡(luò)中所有獨(dú)立源為零值時(shí)的等效電阻。
2、基爾霍夫(克希科夫)定律
a、基爾霍夫第一定律:在任一時(shí)刻流入電路中某一分節(jié)點(diǎn)的電流強(qiáng)度的總和,等于從該點(diǎn)流出的電流強(qiáng)度的總和。
例如,在圖8-2中,針對(duì)節(jié)點(diǎn)P ,有
I2 + I3 = I1
基爾霍夫第一定律也被稱為“節(jié)點(diǎn)電流定律”,它是電荷受恒定律在電路中的具體體現(xiàn)。
對(duì)于基爾霍夫第一定律的理解,近來(lái)已經(jīng)拓展為:流入電路中某一“包容塊”的電流強(qiáng)度的總和,等于從該“包容塊”流出的電流強(qiáng)度的總和。
b、基爾霍夫第二定律:在電路中任取一閉合回路,并規(guī)定正的繞行方向,其中電動(dòng)勢(shì)的代數(shù)和,等于各部分電阻(在交流電路中為阻抗)與電流強(qiáng)度乘積的代數(shù)和。
例如,在圖8-2中,針對(duì)閉合回路① ,有
ε3 ? ε2 = I3 ( r3 + R2 + r2 ) ? I2R2
基爾霍夫第二定律事實(shí)上是含源部分電路歐姆定律的變體(☆同學(xué)們可以列方程 UP = … = UP得到和上面完全相同的式子)。
3、Y?Δ變換
在難以看清串、并聯(lián)關(guān)系的電路中,進(jìn)行“Y型?Δ型”的相互轉(zhuǎn)換常常是必要的。在圖8-3所示的電路中
☆同學(xué)們可以證明Δ→ Y的結(jié)論…
Rc =
Rb =
Ra =
Y→Δ的變換稍稍復(fù)雜一些,但我們?nèi)匀豢梢缘玫?/p>
R1 =
R2 =
R3 =
三、電功和電功率
1、電源
使其他形式的能量轉(zhuǎn)變?yōu)殡娔艿难b置。如發(fā)電機(jī)、電池等。發(fā)電機(jī)是將機(jī)械能轉(zhuǎn)變?yōu)殡娔埽桓呻姵、蓄電池是將化學(xué)能轉(zhuǎn)變?yōu)殡娔埽还怆姵厥菍⒐饽苻D(zhuǎn)變?yōu)殡娔;原子電池是將原子核放射能轉(zhuǎn)變?yōu)殡娔埽辉陔娮釉O(shè)備中,有時(shí)也把變換電能形式的裝置,如整流器等,作為電源看待。
電源電動(dòng)勢(shì)定義為電源的開路電壓,內(nèi)阻則定義為沒(méi)有電動(dòng)勢(shì)時(shí)電路通過(guò)電源所遇到的電阻。據(jù)此不難推出相同電源串聯(lián)、并聯(lián),甚至不同電源串聯(lián)、并聯(lián)的時(shí)的電動(dòng)勢(shì)和內(nèi)阻的值。
例如,電動(dòng)勢(shì)、內(nèi)阻分別為ε1 、r1和ε2 、r2的電源并聯(lián),構(gòu)成的新電源的電動(dòng)勢(shì)ε和內(nèi)阻r分別為(☆師生共同推導(dǎo)…)
ε =
r =
2、電功、電功率
電流通過(guò)電路時(shí),電場(chǎng)力對(duì)電荷作的功叫做電功W。單位時(shí)間內(nèi)電場(chǎng)力所作的功叫做電功率P 。
計(jì)算時(shí),只有W = UIt和P = UI是完全沒(méi)有條件的,對(duì)于不含源的純電阻,電功和焦耳熱重合,電功率則和熱功率重合,有W = I2Rt = t和P = I2R = 。
對(duì)非純電阻電路,電功和電熱的關(guān)系依據(jù)能量守恒定律求解。
四、物質(zhì)的導(dǎo)電性
在不同的物質(zhì)中,電荷定向移動(dòng)形成電流的規(guī)律并不是完全相同的。
1、金屬中的電流
即通常所謂的不含源純電阻中的電流,規(guī)律遵從“外電路歐姆定律”。
2、液體導(dǎo)電
能夠?qū)щ姷囊后w叫電解液(不包括液態(tài)金屬)。電解液中離解出的正負(fù)離子導(dǎo)電是液體導(dǎo)電的特點(diǎn)(如:硫酸銅分子在通常情況下是電中性的,但它在溶液里受水分子的作用就會(huì)離解成銅離子Cu2+和硫酸根離子S,它們?cè)陔妶?chǎng)力的作用下定向移動(dòng)形成電流)。
在電解液中加電場(chǎng)時(shí),在兩個(gè)電極上(或電極旁)同時(shí)產(chǎn)生化學(xué)反應(yīng)的過(guò)程叫作“電解”。電解的結(jié)果是在兩個(gè)極板上(或電極旁)生成新的物質(zhì)。
液體導(dǎo)電遵從法拉第電解定律——
法拉第電解第一定律:電解時(shí)在電極上析出或溶解的物質(zhì)的質(zhì)量和電流強(qiáng)度、跟通電時(shí)間成正比。表達(dá)式:m = kIt = KQ (式中Q為析出質(zhì)量為m的物質(zhì)所需要的電量;K為電化當(dāng)量,電化當(dāng)量的數(shù)值隨著被析出的物質(zhì)種類而不同,某種物質(zhì)的電化當(dāng)量在數(shù)值上等于通過(guò)1C電量時(shí)析出的該種物質(zhì)的質(zhì)量,其單位為kg/C。)
法拉第電解第二定律:物質(zhì)的電化當(dāng)量K和它的化學(xué)當(dāng)量成正比。某種物質(zhì)的化學(xué)當(dāng)量是該物質(zhì)的摩爾質(zhì)量M(克原子量)和它的化合價(jià)n的比值,即 K = ,而F為法拉第常數(shù),對(duì)任何物質(zhì)都相同,F(xiàn) = 9.65×104C/mol 。
將兩個(gè)定律聯(lián)立可得:m = Q 。
3、氣體導(dǎo)電
氣體導(dǎo)電是很不容易的,它的前提是氣體中必須出現(xiàn)可以定向移動(dòng)的離子或電子。按照“載流子”出現(xiàn)方式的不同,可以把氣體放電分為兩大類——
a、被激放電
在地面放射性元素的輻照以及紫外線和宇宙射線等的作用下,會(huì)有少量氣體分子或原子被電離,或在有些燈管內(nèi),通電的燈絲也會(huì)發(fā)射電子,這些“載流子”均會(huì)在電場(chǎng)力作用下產(chǎn)生定向移動(dòng)形成電流。這種情況下的電流一般比較微弱,且遵從歐姆定律。典型的被激放電情形有
b、自激放電
但是,當(dāng)電場(chǎng)足夠強(qiáng),電子動(dòng)能足夠大,它們和中性氣體相碰撞時(shí),可以使中性分子電離,即所謂碰撞電離。同時(shí),在正離子向陰極運(yùn)動(dòng)時(shí),由于以很大的速度撞到陰極上,還可能從陰極表面上打出電子來(lái),這種現(xiàn)象稱為二次電子發(fā)射。碰撞電離和二次電子發(fā)射使氣體中在很短的時(shí)間內(nèi)出現(xiàn)了大量的電子和正離子,電流亦迅速增大。這種現(xiàn)象被稱為自激放電。自激放電不遵從歐姆定律。
常見的自激放電有四大類:輝光放電、弧光放電、火花放電、電暈放電。
4、超導(dǎo)現(xiàn)象
據(jù)金屬電阻率和溫度的關(guān)系,電阻率會(huì)隨著溫度的降低和降低。當(dāng)電阻率降為零時(shí),稱為超導(dǎo)現(xiàn)象。電阻率為零時(shí)對(duì)應(yīng)的溫度稱為臨界溫度。超導(dǎo)現(xiàn)象首先是荷蘭物理學(xué)家昂尼斯發(fā)現(xiàn)的。
超導(dǎo)的應(yīng)用前景是顯而易見且相當(dāng)廣闊的。但由于一般金屬的臨界溫度一般都非常低,故產(chǎn)業(yè)化的價(jià)值不大,為了解決這個(gè)矛盾,科學(xué)家們致力于尋找或合成臨界溫度比較切合實(shí)際的材料就成了當(dāng)今前沿科技的一個(gè)熱門領(lǐng)域。當(dāng)前人們的研究主要是集中在合成材料方面,臨界溫度已經(jīng)超過(guò)100K,當(dāng)然,這個(gè)溫度距產(chǎn)業(yè)化的期望值還很遠(yuǎn)。
5、半導(dǎo)體
半導(dǎo)體的電阻率界于導(dǎo)體和絕緣體之間,且ρ
第二部分 牛頓運(yùn)動(dòng)定律
第一講 牛頓三定律
一、牛頓第一定律
1、定律。慣性的量度
2、觀念意義,突破“初態(tài)困惑”
二、牛頓第二定律
1、定律
2、理解要點(diǎn)
a、矢量性
b、獨(dú)立作用性:ΣF → a ,ΣFx → ax …
c、瞬時(shí)性。合力可突變,故加速度可突變(與之對(duì)比:速度和位移不可突變);牛頓第二定律展示了加速度的決定式(加速度的定義式僅僅展示了加速度的“測(cè)量手段”)。
3、適用條件
a、宏觀、低速
b、慣性系
對(duì)于非慣性系的定律修正——引入慣性力、參與受力分析
三、牛頓第三定律
1、定律
2、理解要點(diǎn)
a、同性質(zhì)(但不同物體)
b、等時(shí)效(同增同減)
c、無(wú)條件(與運(yùn)動(dòng)狀態(tài)、空間選擇無(wú)關(guān))
第二講 牛頓定律的應(yīng)用
一、牛頓第一、第二定律的應(yīng)用
單獨(dú)應(yīng)用牛頓第一定律的物理問(wèn)題比較少,一般是需要用其解決物理問(wèn)題中的某一個(gè)環(huán)節(jié)。
應(yīng)用要點(diǎn):合力為零時(shí),物體靠慣性維持原有運(yùn)動(dòng)狀態(tài);只有物體有加速度時(shí)才需要合力。有質(zhì)量的物體才有慣性。a可以突變而v、s不可突變。
1、如圖1所示,在馬達(dá)的驅(qū)動(dòng)下,皮帶運(yùn)輸機(jī)上方的皮帶以恒定的速度向右運(yùn)動(dòng),F(xiàn)將一工件(大小不計(jì))在皮帶左端A點(diǎn)輕輕放下,則在此后的過(guò)程中( )
A、一段時(shí)間內(nèi),工件將在滑動(dòng)摩擦力作用下,對(duì)地做加速運(yùn)動(dòng)
B、當(dāng)工件的速度等于v時(shí),它與皮帶之間的摩擦力變?yōu)殪o摩擦力
C、當(dāng)工件相對(duì)皮帶靜止時(shí),它位于皮帶上A點(diǎn)右側(cè)的某一點(diǎn)
D、工件在皮帶上有可能不存在與皮帶相對(duì)靜止的狀態(tài)
解說(shuō):B選項(xiàng)需要用到牛頓第一定律,A、C、D選項(xiàng)用到牛頓第二定律。
較難突破的是A選項(xiàng),在為什么不會(huì)“立即跟上皮帶”的問(wèn)題上,建議使用反證法(t → 0 ,a → ∞ ,則ΣFx → ∞ ,必然會(huì)出現(xiàn)“供不應(yīng)求”的局面)和比較法(為什么人跳上速度不大的物體可以不發(fā)生相對(duì)滑動(dòng)?因?yàn)槿耸强梢孕巫儭⒅匦目梢哉{(diào)節(jié)的特殊“物體”)
此外,本題的D選項(xiàng)還要用到勻變速運(yùn)動(dòng)規(guī)律。用勻變速運(yùn)動(dòng)規(guī)律和牛頓第二定律不難得出
只有當(dāng)L > 時(shí)(其中μ為工件與皮帶之間的動(dòng)摩擦因素),才有相對(duì)靜止的過(guò)程,否則沒(méi)有。
答案:A、D
思考:令L = 10m ,v = 2 m/s ,μ= 0.2 ,g取10 m/s2 ,試求工件到達(dá)皮帶右端的時(shí)間t(過(guò)程略,答案為5.5s)
進(jìn)階練習(xí):在上面“思考”題中,將工件給予一水平向右的初速v0 ,其它條件不變,再求t(學(xué)生分以下三組進(jìn)行)——
① v0 = 1m/s (答:0.5 + 37/8 = 5.13s)
② v0 = 4m/s (答:1.0 + 3.5 = 4.5s)
③ v0 = 1m/s (答:1.55s)
2、質(zhì)量均為m的兩只鉤碼A和B,用輕彈簧和輕繩連接,然后掛在天花板上,如圖2所示。試問(wèn):
① 如果在P處剪斷細(xì)繩,在剪斷瞬時(shí),B的加速度是多少?
② 如果在Q處剪斷彈簧,在剪斷瞬時(shí),B的加速度又是多少?
解說(shuō):第①問(wèn)是常規(guī)處理。由于“彈簧不會(huì)立即發(fā)生形變”,故剪斷瞬間彈簧彈力維持原值,所以此時(shí)B鉤碼的加速度為零(A的加速度則為2g)。
第②問(wèn)需要我們反省這樣一個(gè)問(wèn)題:“彈簧不會(huì)立即發(fā)生形變”的原因是什么?是A、B兩物的慣性,且速度v和位移s不能突變。但在Q點(diǎn)剪斷彈簧時(shí),彈簧卻是沒(méi)有慣性的(沒(méi)有質(zhì)量),遵從理想模型的條件,彈簧應(yīng)在一瞬間恢復(fù)原長(zhǎng)!即彈簧彈力突變?yōu)榱恪?/p>
答案:0 ;g 。
二、牛頓第二定律的應(yīng)用
應(yīng)用要點(diǎn):受力較少時(shí),直接應(yīng)用牛頓第二定律的“矢量性”解題。受力比較多時(shí),結(jié)合正交分解與“獨(dú)立作用性”解題。
在難度方面,“瞬時(shí)性”問(wèn)題相對(duì)較大。
1、滑塊在固定、光滑、傾角為θ的斜面上下滑,試求其加速度。
解說(shuō):受力分析 → 根據(jù)“矢量性”定合力方向 → 牛頓第二定律應(yīng)用
答案:gsinθ。
思考:如果斜面解除固定,上表仍光滑,傾角仍為θ,要求滑塊與斜面相對(duì)靜止,斜面應(yīng)具備一個(gè)多大的水平加速度?(解題思路完全相同,研究對(duì)象仍為滑塊。但在第二環(huán)節(jié)上應(yīng)注意區(qū)別。答:gtgθ。)
進(jìn)階練習(xí)1:在一向右運(yùn)動(dòng)的車廂中,用細(xì)繩懸掛的小球呈現(xiàn)如圖3所示的穩(wěn)定狀態(tài),試求車廂的加速度。(和“思考”題同理,答:gtgθ。)
進(jìn)階練習(xí)2、如圖4所示,小車在傾角為α的斜面上勻加速運(yùn)動(dòng),車廂頂用細(xì)繩懸掛一小球,發(fā)現(xiàn)懸繩與豎直方向形成一個(gè)穩(wěn)定的夾角β。試求小車的加速度。
解:繼續(xù)貫徹“矢量性”的應(yīng)用,但數(shù)學(xué)處理復(fù)雜了一些(正弦定理解三角形)。
分析小球受力后,根據(jù)“矢量性”我們可以做如圖5所示的平行四邊形,并找到相應(yīng)的夾角。設(shè)張力T與斜面方向的夾角為θ,則
θ=(90°+ α)- β= 90°-(β-α) (1)
對(duì)灰色三角形用正弦定理,有
= (2)
解(1)(2)兩式得:ΣF =
最后運(yùn)用牛頓第二定律即可求小球加速度(即小車加速度)
答: 。
2、如圖6所示,光滑斜面傾角為θ,在水平地面上加速運(yùn)動(dòng)。斜面上用一條與斜面平行的細(xì)繩系一質(zhì)量為m的小球,當(dāng)斜面加速度為a時(shí)(a<ctgθ),小球能夠保持相對(duì)斜面靜止。試求此時(shí)繩子的張力T 。
解說(shuō):當(dāng)力的個(gè)數(shù)較多,不能直接用平行四邊形尋求合力時(shí),宜用正交分解處理受力,在對(duì)應(yīng)牛頓第二定律的“獨(dú)立作用性”列方程。
正交坐標(biāo)的選擇,視解題方便程度而定。
解法一:先介紹一般的思路。沿加速度a方向建x軸,與a垂直的方向上建y軸,如圖7所示(N為斜面支持力)。于是可得兩方程
ΣFx = ma ,即Tx - Nx = ma
ΣFy = 0 , 即Ty + Ny = mg
代入方位角θ,以上兩式成為
T cosθ-N sinθ = ma (1)
T sinθ + Ncosθ = mg (2)
這是一個(gè)關(guān)于T和N的方程組,解(1)(2)兩式得:T = mgsinθ + ma cosθ
解法二:下面嘗試一下能否獨(dú)立地解張力T 。將正交分解的坐標(biāo)選擇為:x——斜面方向,y——和斜面垂直的方向。這時(shí),在分解受力時(shí),只分解重力G就行了,但值得注意,加速度a不在任何一個(gè)坐標(biāo)軸上,是需要分解的。矢量分解后,如圖8所示。
根據(jù)獨(dú)立作用性原理,ΣFx = max
即:T - Gx = max
即:T - mg sinθ = m acosθ
顯然,獨(dú)立解T值是成功的。結(jié)果與解法一相同。
答案:mgsinθ + ma cosθ
思考:當(dāng)a>ctgθ時(shí),張力T的結(jié)果會(huì)變化嗎?(從支持力的結(jié)果N = mgcosθ-ma sinθ看小球脫離斜面的條件,求脫離斜面后,θ條件已沒(méi)有意義。答:T = m 。)
學(xué)生活動(dòng):用正交分解法解本節(jié)第2題“進(jìn)階練習(xí)2”
進(jìn)階練習(xí):如圖9所示,自動(dòng)扶梯與地面的夾角為30°,但扶梯的臺(tái)階是水平的。當(dāng)扶梯以a = 4m/s2的加速度向上運(yùn)動(dòng)時(shí),站在扶梯上質(zhì)量為60kg的人相對(duì)扶梯靜止。重力加速度g = 10 m/s2,試求扶梯對(duì)人的靜摩擦力f 。
解:這是一個(gè)展示獨(dú)立作用性原理的經(jīng)典例題,建議學(xué)生選擇兩種坐標(biāo)(一種是沿a方向和垂直a方向,另一種是水平和豎直方向),對(duì)比解題過(guò)程,進(jìn)而充分領(lǐng)會(huì)用牛頓第二定律解題的靈活性。
答:208N 。
3、如圖10所示,甲圖系著小球的是兩根輕繩,乙圖系著小球的是一根輕彈簧和輕繩,方位角θ已知,F(xiàn)將它們的水平繩剪斷,試求:在剪斷瞬間,兩種情形下小球的瞬時(shí)加速度。
解說(shuō):第一步,闡明繩子彈力和彈簧彈力的區(qū)別。
(學(xué)生活動(dòng))思考:用豎直的繩和彈簧懸吊小球,并用豎直向下的力拉住小球靜止,然后同時(shí)釋放,會(huì)有什么現(xiàn)象?原因是什么?
結(jié)論——繩子的彈力可以突變而彈簧的彈力不能突變(胡克定律)。
第二步,在本例中,突破“繩子的拉力如何瞬時(shí)調(diào)節(jié)”這一難點(diǎn)(從即將開始的運(yùn)動(dòng)來(lái)反推)。
知識(shí)點(diǎn),牛頓第二定律的瞬時(shí)性。
答案:a甲 = gsinθ ;a乙 = gtgθ 。
應(yīng)用:如圖11所示,吊籃P掛在天花板上,與吊籃質(zhì)量相等的物體Q被固定在吊籃中的輕彈簧托住,當(dāng)懸掛吊籃的細(xì)繩被燒斷瞬間,P、Q的加速度分別是多少?
解:略。
答:2g ;0 。
三、牛頓第二、第三定律的應(yīng)用
要點(diǎn):在動(dòng)力學(xué)問(wèn)題中,如果遇到幾個(gè)研究對(duì)象時(shí),就會(huì)面臨如何處理對(duì)象之間的力和對(duì)象與外界之間的力問(wèn)題,這時(shí)有必要引進(jìn)“系統(tǒng)”、“內(nèi)力”和“外力”等概念,并適時(shí)地運(yùn)用牛頓第三定律。
在方法的選擇方面,則有“隔離法”和“整體法”。前者是根本,后者有局限,也有難度,但常常使解題過(guò)程簡(jiǎn)化,使過(guò)程的物理意義更加明晰。
對(duì)N個(gè)對(duì)象,有N個(gè)隔離方程和一個(gè)(可能的)整體方程,這(N + 1)個(gè)方程中必有一個(gè)是通解方程,如何取舍,視解題方便程度而定。
補(bǔ)充:當(dāng)多個(gè)對(duì)象不具有共同的加速度時(shí),一般來(lái)講,整體法不可用,但也有一種特殊的“整體方程”,可以不受這個(gè)局限(可以介紹推導(dǎo)過(guò)程)——
Σ= m1 + m2 + m3 + … + mn
其中Σ只能是系統(tǒng)外力的矢量和,等式右邊也是矢量相加。
1、如圖12所示,光滑水平面上放著一個(gè)長(zhǎng)為L(zhǎng)的均質(zhì)直棒,現(xiàn)給棒一個(gè)沿棒方向的、大小為F的水平恒力作用,則棒中各部位的張力T隨圖中x的關(guān)系怎樣?
解說(shuō):截取隔離對(duì)象,列整體方程和隔離方程(隔離右段較好)。
答案:N = x 。
思考:如果水平面粗糙,結(jié)論又如何?
解:分兩種情況,(1)能拉動(dòng);(2)不能拉動(dòng)。
第(1)情況的計(jì)算和原題基本相同,只是多了一個(gè)摩擦力的處理,結(jié)論的化簡(jiǎn)也麻煩一些。
第(2)情況可設(shè)棒的總質(zhì)量為M ,和水平面的摩擦因素為μ,而F = μMg ,其中l(wèi)<L ,則x<(L-l)的右段沒(méi)有張力,x>(L-l)的左端才有張力。
答:若棒仍能被拉動(dòng),結(jié)論不變。
若棒不能被拉動(dòng),且F = μMg時(shí)(μ為棒與平面的摩擦因素,l為小于L的某一值,M為棒的總質(zhì)量),當(dāng)x<(L-l),N≡0 ;當(dāng)x>(L-l),N = 〔x -〈L-l〉〕。
應(yīng)用:如圖13所示,在傾角為θ的固定斜面上,疊放著兩個(gè)長(zhǎng)方體滑塊,它們的質(zhì)量分別為m1和m2 ,它們之間的摩擦因素、和斜面的摩擦因素分別為μ1和μ2 ,系統(tǒng)釋放后能夠一起加速下滑,則它們之間的摩擦力大小為:
A、μ1 m1gcosθ ; B、μ2 m1gcosθ ;
C、μ1 m2gcosθ ; D、μ1 m2gcosθ ;
解:略。
答:B 。(方向沿斜面向上。)
思考:(1)如果兩滑塊不是下滑,而是以初速度v0一起上沖,以上結(jié)論會(huì)變嗎?(2)如果斜面光滑,兩滑塊之間有沒(méi)有摩擦力?(3)如果將下面的滑塊換成如圖14所示的盒子,上面的滑塊換成小球,它們以初速度v0一起上沖,球應(yīng)對(duì)盒子的哪一側(cè)內(nèi)壁有壓力?
解:略。
答:(1)不會(huì);(2)沒(méi)有;(3)若斜面光滑,對(duì)兩內(nèi)壁均無(wú)壓力,若斜面粗糙,對(duì)斜面上方的內(nèi)壁有壓力。
2、如圖15所示,三個(gè)物體質(zhì)量分別為m1 、m2和m3 ,帶滑輪的物體放在光滑水平面上,滑輪和所有接觸面的摩擦均不計(jì),繩子的質(zhì)量也不計(jì),為使三個(gè)物體無(wú)相對(duì)滑動(dòng),水平推力F應(yīng)為多少?
解說(shuō):
此題對(duì)象雖然有三個(gè),但難度不大。隔離m2 ,豎直方向有一個(gè)平衡方程;隔離m1 ,水平方向有一個(gè)動(dòng)力學(xué)方程;整體有一個(gè)動(dòng)力學(xué)方程。就足以解題了。
答案:F = 。
思考:若將質(zhì)量為m3物體右邊挖成凹形,讓m2可以自由擺動(dòng)(而不與m3相碰),如圖16所示,其它條件不變。是否可以選擇一個(gè)恰當(dāng)?shù)腇′,使三者無(wú)相對(duì)運(yùn)動(dòng)?如果沒(méi)有,說(shuō)明理由;如果有,求出這個(gè)F′的值。
解:此時(shí),m2的隔離方程將較為復(fù)雜。設(shè)繩子張力為T ,m2的受力情況如圖,隔離方程為:
= m2a
隔離m1 ,仍有:T = m1a
解以上兩式,可得:a = g
最后用整體法解F即可。
答:當(dāng)m1 ≤ m2時(shí),沒(méi)有適應(yīng)題意的F′;當(dāng)m1 > m2時(shí),適應(yīng)題意的F′= 。
3、一根質(zhì)量為M的木棒,上端用細(xì)繩系在天花板上,棒上有一質(zhì)量為m的貓,如圖17所示。現(xiàn)將系木棒的繩子剪斷,同時(shí)貓相對(duì)棒往上爬,但要求貓對(duì)地的高度不變,則棒的加速度將是多少?
解說(shuō):法一,隔離法。需要設(shè)出貓爪抓棒的力f ,然后列貓的平衡方程和棒的動(dòng)力學(xué)方程,解方程組即可。
法二,“新整體法”。
據(jù)Σ= m1 + m2 + m3 + … + mn ,貓和棒的系統(tǒng)外力只有兩者的重力,豎直向下,而貓的加速度a1 = 0 ,所以:
( M + m )g = m·0 + M a1
解棒的加速度a1十分容易。
答案:g 。
四、特殊的連接體
當(dāng)系統(tǒng)中各個(gè)體的加速度不相等時(shí),經(jīng)典的整體法不可用。如果各個(gè)體的加速度不在一條直線上,“新整體法”也將有一定的困難(矢量求和不易)。此時(shí),我們回到隔離法,且要更加注意找各參量之間的聯(lián)系。
解題思想:抓某個(gè)方向上加速度關(guān)系。方法:“微元法”先看位移關(guān)系,再推加速度關(guān)系。、
1、如圖18所示,一質(zhì)量為M 、傾角為θ的光滑斜面,放置在光滑的水平面上,另一個(gè)質(zhì)量為m的滑塊從斜面頂端釋放,試求斜面的加速度。
解說(shuō):本題涉及兩個(gè)物體,它們的加速度關(guān)系復(fù)雜,但在垂直斜面方向上,大小是相等的。對(duì)兩者列隔離方程時(shí),務(wù)必在這個(gè)方向上進(jìn)行突破。
(學(xué)生活動(dòng))定型判斷斜面的運(yùn)動(dòng)情況、滑塊的運(yùn)動(dòng)情況。
位移矢量示意圖如圖19所示。根據(jù)運(yùn)動(dòng)學(xué)規(guī)律,加速度矢量a1和a2也具有這樣的關(guān)系。
(學(xué)生活動(dòng))這兩個(gè)加速度矢量有什么關(guān)系?
沿斜面方向、垂直斜面方向建x 、y坐標(biāo),可得:
a1y = a2y ①
且:a1y = a2sinθ ②
隔離滑塊和斜面,受力圖如圖20所示。
對(duì)滑塊,列y方向隔離方程,有:
mgcosθ- N = ma1y ③
對(duì)斜面,仍沿合加速度a2方向列方程,有:
Nsinθ= Ma2 ④
解①②③④式即可得a2 。
答案:a2 = 。
(學(xué)生活動(dòng))思考:如何求a1的值?
解:a1y已可以通過(guò)解上面的方程組求出;a1x只要看滑塊的受力圖,列x方向的隔離方程即可,顯然有mgsinθ= ma1x ,得:a1x = gsinθ 。最后據(jù)a1 = 求a1 。
答:a1 = 。
2、如圖21所示,與水平面成θ角的AB棒上有一滑套C ,可以無(wú)摩擦地在棒上滑動(dòng),開始時(shí)與棒的A端相距b ,相對(duì)棒靜止。當(dāng)棒保持傾角θ不變地沿水平面勻加速運(yùn)動(dòng),加速度為a(且a>gtgθ)時(shí),求滑套C從棒的A端滑出所經(jīng)歷的時(shí)間。
解說(shuō):這是一個(gè)比較特殊的“連接體問(wèn)題”,尋求運(yùn)動(dòng)學(xué)參量的關(guān)系似乎比動(dòng)力學(xué)分析更加重要。動(dòng)力學(xué)方面,只需要隔離滑套C就行了。
(學(xué)生活動(dòng))思考:為什么題意要求a>gtgθ?(聯(lián)系本講第二節(jié)第1題之“思考題”)
定性繪出符合題意的運(yùn)動(dòng)過(guò)程圖,如圖22所示:S表示棒的位移,S1表示滑套的位移。沿棒與垂直棒建直角坐標(biāo)后,S1x表示S1在x方向上的分量。不難看出:
S1x + b = S cosθ ①
設(shè)全程時(shí)間為t ,則有:
S = at2 ②
S1x = a1xt2 ③
而隔離滑套,受力圖如圖23所示,顯然:
mgsinθ= ma1x ④
解①②③④式即可。
答案:t =
另解:如果引進(jìn)動(dòng)力學(xué)在非慣性系中的修正式 Σ+ * = m (注:*為慣性力),此題極簡(jiǎn)單。過(guò)程如下——
以棒為參照,隔離滑套,分析受力,如圖24所示。
注意,滑套相對(duì)棒的加速度a相是沿棒向上的,故動(dòng)力學(xué)方程為:
F*cosθ- mgsinθ= ma相 (1)
其中F* = ma (2)
而且,以棒為參照,滑套的相對(duì)位移S相就是b ,即:
b = S相 = a相 t2 (3)
解(1)(2)(3)式就可以了。
第二講 配套例題選講
教材范本:龔霞玲主編《奧林匹克物理思維訓(xùn)練教材》,知識(shí)出版社,2002年8月第一版。
例題選講針對(duì)“教材”第三章的部分例題和習(xí)題。
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com