(Ⅱ) 設(shè)正數(shù)數(shù)列滿足.求數(shù)列中的最大項, 查看更多

 

題目列表(包括答案和解析)

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有2Sn=an2+an
(1)求數(shù)列{an}的通項公式;
(2)設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cnn+1,(n∈N*),求數(shù)列{cn}中的最大項;

查看答案和解析>>

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有2Sn=
a
2
n
+an

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cn)n+1,(n∈N*),求數(shù)列{cn}中的最大項;
(Ⅲ) 求證:Tn=
1
a
4
1
+
1
a
4
2
+
1
a
4
3
+…+
1
a
4
n
11
10

查看答案和解析>>

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有2Sn=an2+an
(1)求數(shù)列{an}的通項公式;
(2)設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cnn+1,(n∈N*),求數(shù)列{cn}中的最大項;

查看答案和解析>>

數(shù)列{an}的各項均為正數(shù),Sn為其前n項和,對于任意n∈N*,總有2Sn=
a2n
+an

(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ) 設(shè)正數(shù)數(shù)列{cn}滿足an+1=(cn)n+1,(n∈N*),求數(shù)列{cn}中的最大項;
(Ⅲ) 求證:Tn=
1
a41
+
1
a42
+
1
a43
+…+
1
a4n
11
10

查看答案和解析>>

數(shù)列的各項均為正數(shù),為其前項和,

對于任意,總有

(1) 求數(shù)列的通項公式;

(2) 設(shè)正數(shù)數(shù)列滿足,

求數(shù)列中的最大項;

查看答案和解析>>

一、BCBBA    BCDCB    DB

二.填空題:本大題共4小題,每小題5分,共20分

13        14 ..4        15.      16. (2,3)

三、解答題(本大題共6小題,共70分,解答應(yīng)寫出文字說明、證明過程或演算步驟)

17. (本大題共10分)

解:由于y=2x是增函數(shù),等價于

.    ①…………………………………  2分

    (i) 當(dāng)x≥1時,|x+1|-|(x-1)|=2.…………………………………… 5分

∴①式恒成立.

    (ii) 當(dāng)-1<x<1時,|x+1|-|x-1|=2x

①式化為………………………………… 8分

    (iii)當(dāng)x≤-1時,|x+1|-|x-1|=-2,

①式無解.

綜上, x取值范圍是.………………………………     10分

18. (本小題滿分12分)

.解:(1),,且.

,即,又,……..2分

又由                            5分

   (2)由正弦定理得:,               7分

,

…………9分

,則.則

的取值范圍是…………………                   12分

19.(本小題滿分12分)

(1)解:設(shè)“射手射擊1次,擊中目標(biāo)”為事件A

則在3次射擊中至少有兩次連續(xù)擊中目標(biāo)的概率

=                     7分

(2)解:射手第3次擊中目標(biāo)時,恰好射擊了4次的概率

                              12分

20. (本小題滿分12分)

(Ⅰ)解:,令,得.          2分

0

極大值

由上圖表知:

的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為.

的極大值為.                                5分

   (Ⅱ)證明:對一切,都有成立

則有

由(Ⅰ)知,的最大值為

并且成立,                                    8分

當(dāng)且僅當(dāng)時成立,

函數(shù)的最小值大于等于函數(shù)的最大值,

但等號不能同時成立.

    所以,對一切,都有成立.        12分

21.(本小題滿分12分)

(Ⅰ)解:由已知:對于,總有 ①成立

   (n ≥ 2)②  

①--②得

均為正數(shù),∴   (n ≥ 2)

∴數(shù)列是公差為1的等差數(shù)列                

又n=1時,, 解得=1

.()                         ……………4分

(Ⅱ)(解法一)由已知  ,      

        

        易得 

        猜想 n≥2 時,是遞減數(shù)列.             

∵當(dāng)

∴在內(nèi)為單調(diào)遞減函數(shù).

.

∴n≥2 時, 是遞減數(shù)列.即是遞減數(shù)列.

, ∴數(shù)列中的最大項為.    ……………   6分

 (解法二) 猜測數(shù)列中的最大項為

易直接驗證;

以下用數(shù)學(xué)歸納法證明n≥3 時,

       (1)當(dāng)時, , 所以時不等式成立;

       (2)假設(shè)時不等式成立,即,即,

當(dāng)時, ,

所以,即時不等式成立.

由(1)(2)知對一切不小于3的正整數(shù)都成立.

……………      8分

(Ⅲ)(解法一)當(dāng)時,可證:          …………… 10分

   ……………        12分

  (解法二) 時,  ……8分

   

                                             …………… 12分

注:也可分段估計,轉(zhuǎn)化為等比數(shù)列求和(也可加強(qiáng)命題,使用數(shù)學(xué)歸納法)

 

22.(本小題滿分12分)

解:(I)由

       故的方程為點A的坐標(biāo)為(1,0)                      2分

       設(shè)

       由

       整理                                                4分

    動點M的軌跡C為以原點為中心,焦點在x軸上,

長軸長為,短軸長為2的橢圓。                               5分

(II)如圖,由題意知的斜率存在且不為零,                            

       設(shè)方程為

       將①代入,整理,得

                  7分

       設(shè)、,

       則  ②

       令

       由此可得

       由②知

      

       ,

       即                                          10分

      

      

       解得

       又

       面積之比的取值范圍是            12分

 

 

 

 

 

 


同步練習(xí)冊答案