題目列表(包括答案和解析)
已知m>1,直線,橢圓C:,、分別為橢圓C的左、右焦點(diǎn).
(Ⅰ)當(dāng)直線過右焦點(diǎn)時(shí),求直線的方程;
(Ⅱ)設(shè)直線與橢圓C交于A、B兩點(diǎn),△A、△B的重心分別為G、H.若原點(diǎn)O在以線段GH為直徑的圓內(nèi),求實(shí)數(shù)m的取值范圍.[
【解析】第一問中因?yàn)橹本經(jīng)過點(diǎn)(,0),所以=,得.又因?yàn)閙>1,所以,故直線的方程為
第二問中設(shè),由,消去x,得,
則由,知<8,且有
由題意知O為的中點(diǎn).由可知從而,設(shè)M是GH的中點(diǎn),則M().
由題意可知,2|MO|<|GH|,得到范圍
已知曲線C:(m∈R)
(1) 若曲線C是焦點(diǎn)在x軸點(diǎn)上的橢圓,求m的取值范圍;
(2) 設(shè)m=4,曲線c與y軸的交點(diǎn)為A,B(點(diǎn)A位于點(diǎn)B的上方),直線y=kx+4與曲線c交于不同的兩點(diǎn)M、N,直線y=1與直線BM交于點(diǎn)G.求證:A,G,N三點(diǎn)共線。
【解析】(1)曲線C是焦點(diǎn)在x軸上的橢圓,當(dāng)且僅當(dāng)解得,所以m的取值范圍是
(2)當(dāng)m=4時(shí),曲線C的方程為,點(diǎn)A,B的坐標(biāo)分別為,
由,得
因?yàn)橹本與曲線C交于不同的兩點(diǎn),所以
即
設(shè)點(diǎn)M,N的坐標(biāo)分別為,則
直線BM的方程為,點(diǎn)G的坐標(biāo)為
因?yàn)橹本AN和直線AG的斜率分別為
所以
即,故A,G,N三點(diǎn)共線。
已知函數(shù),
(1)設(shè)常數(shù),若在區(qū)間上是增函數(shù),求的取值范圍;
(2)設(shè)集合,,若,求的取值范圍.
【解析】本試題主要考查了三角函數(shù)的性質(zhì)的運(yùn)用以及集合關(guān)系的運(yùn)用。
第一問中利用
利用函數(shù)的單調(diào)性得到,參數(shù)的取值范圍。
第二問中,由于解得參數(shù)m的取值范圍。
(1)由已知
又因?yàn)槌?shù),若在區(qū)間上是增函數(shù)故參數(shù)
(2)因?yàn)榧?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070911521242131321/SYS201207091152574838608756_ST.files/image006.png">,,若
(1)求f(x)的單調(diào)區(qū)間;
(2)討論f(x)的極值.
所以f(-1)=2是極大值,f(1)=-2是極小值.
(2)曲線方程為y=x3-3x,點(diǎn)A(0,16)不在曲線上.
設(shè)切點(diǎn)為M(x0,y0),則點(diǎn)M的坐標(biāo)滿足y0=x03-3x0.
因f′(x0)=3(x02-1),故切線的方程為y-y0=3(x02-1)(x-x0).
注意到點(diǎn)A(0,16)在切線上,有16-(x03-3x0)=3(x02-1)(0-x0),
化簡(jiǎn)得x03=-8,解得x0=-2.
所以切點(diǎn)為M(-2,-2),
切線方程為9x-y+16=0.
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com