故 ????????????????????????????????????????????????10分 查看更多

 

題目列表(包括答案和解析)

閱讀不等式5x≥4x+1的解法:
解:由5x≥4x+1,兩邊同除以5x可得1≥(
4
5
)x+(
1
5
)x

由于0<
1
5
4
5
<1
,顯然函數(shù)f(x)=(
4
5
x+(
1
5
x在R上為單調(diào)減函數(shù),
f(1)=
4
5
+
1
5
=1
,故當(dāng)x>1時(shí),有f(x)=(
4
5
x+(
1
5
x<f(x)=1
所以不等式的解集為{x|x≥1}.
利用解此不等式的方法解決以下問(wèn)題:
(1)解不等式:9x>5x+4x
(2)證明:方程5x+12x=13x有唯一解,并求出該解.

查看答案和解析>>

河道上有一座圓拱橋,在正常水位時(shí),拱圈最高點(diǎn)距水面為4m,拱圈內(nèi)水面寬12m,一條船在水面以上部分高2.5m,船頂部寬4m,故通行無(wú)阻,近日水位暴漲了1.7m,為此,必須加重船載,降低船身,才能通過(guò)橋洞.試問(wèn):船身應(yīng)該降低多少?

查看答案和解析>>

(2012•海淀區(qū)二模)將一個(gè)正整數(shù)n表示為a1+a2+…+ap(p∈N*)的形式,其中ai∈N*,i=1,2,…,p,且a1≤a2≤…≤ap,記所有這樣的表示法的種數(shù)為f(n)(如4=4,4=1+3,4=2+2,4=1+1+2,4=1+1+1+1,故f(4)=5).
(Ⅰ)寫(xiě)出f(3),f(5)的值,并說(shuō)明理由;
(Ⅱ)對(duì)任意正整數(shù)n,比較f(n+1)與
12
[f(n)+f(n+2)]
的大小,并給出證明;
(Ⅲ)當(dāng)正整數(shù)n≥6時(shí),求證:f(n)≥4n-13.

查看答案和解析>>

下列結(jié)論中,正確的是( 。
①命題“如果p2+q2=2,則p+q≤2”的逆否命題是“如果p+q>2,則p2+q2≠2”;
②已知
a
,
b
c
為非零的平面向量.甲:
a
b
=
b
c
,乙:
b
=
c
,則甲是乙的必要條件,但不是充分條件;
③p:y=a2(a>0,且a≠1)是周期函數(shù),q:y=sinx是周期函數(shù),則p∧q是真命題;
④命題p:?x∈R,x2-3x+2≥0的否定是:¬P:?X∈R,x2-3x+2<0.
   

查看答案和解析>>

我們把形如y=
b|x|-a
(a>0,b>0)
的函數(shù)因其函數(shù)圖象類似于漢字中的“囧”字,故生動(dòng)地稱為“囧函數(shù)”.若當(dāng)a=1,b=1時(shí)的囧函數(shù)與函數(shù)y=lg|x|的交點(diǎn)個(gè)數(shù)為n個(gè),則n=
4
4

查看答案和解析>>


同步練習(xí)冊(cè)答案