B.若, 查看更多

 

題目列表(包括答案和解析)

B.選修4-2:矩陣與變換
設(shè)a>0,b>0,若矩陣A=
.
a0
0b
.
把圓C:x2+y2=1變換為橢圓E:
x2
4
+
y2
3
=1.
(1)求a,b的值;
(2)求矩陣A的逆矩陣A-1
C.選修4-4:坐標(biāo)系與參數(shù)方程在極坐標(biāo)系中,已知圓C:ρ=4cosθ被直線l:ρsin(θ-
π
6
)=a截得的弦長(zhǎng)為2
3
,求實(shí)數(shù)a的值.

查看答案和解析>>

B.選修4-2:矩陣與變換
已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到
(1)求實(shí)數(shù)的值;
(2)矩陣A的特征值和特征向量.

查看答案和解析>>

B.選修4—2 矩陣與變換
已知矩陣,其中,若點(diǎn)在矩陣的變換下得到點(diǎn),
(1)求實(shí)數(shù)a的值;   
(2)求矩陣的特征值及其對(duì)應(yīng)的特征向量.

查看答案和解析>>

(21分).若非零函數(shù)對(duì)任意實(shí)數(shù)均有¦(a+b)=¦(a)·¦(b),且當(dāng)時(shí),.

(1)求證:;        

(2)求證:為減函數(shù);

(3)當(dāng)時(shí),解不等式

 

查看答案和解析>>

B.選修4-2:矩陣與變換

已知矩陣A,其中,若點(diǎn)在矩陣A的變換下得到

   (1)求實(shí)數(shù)的值;

   (2)矩陣A的特征值和特征向量.

 

查看答案和解析>>

一、填空題:(5’×11=55’)

題號(hào)

1

2

3

4

5

6

答案

0

(1,2)

2

題號(hào)

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號(hào)

12

13

14

15

答案

A

C

B

        20090116

        三、解答題:(12’+14’+15’+16’+22’=79’)

        16.解:由條件,可得,故左焦點(diǎn)的坐標(biāo)為

        設(shè)為橢圓上的動(dòng)點(diǎn),由于橢圓方程為,故

        因?yàn)?sub>,所以

        ,

        由二次函數(shù)性質(zhì)可知,當(dāng)時(shí),取得最小值4.

        所以,的模的最小值為2,此時(shí)點(diǎn)坐標(biāo)為

        17.解:(1)當(dāng)時(shí),;

        當(dāng)時(shí),;

        當(dāng)時(shí),;(不單獨(dú)分析時(shí)的情況不扣分)

        當(dāng)時(shí),

        (2)由(1)知:當(dāng)時(shí),集合中的元素的個(gè)數(shù)無(wú)限;

        當(dāng)時(shí),集合中的元素的個(gè)數(shù)有限,此時(shí)集合為有限集.

        因?yàn)?sub>,當(dāng)且僅當(dāng)時(shí)取等號(hào),

        所以當(dāng)時(shí),集合的元素個(gè)數(shù)最少.

        此時(shí),故集合

        18.(本題滿分15分,1小題6分,第2小題9

        解:

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         (2)解:如圖所示.由,則

        所以,四棱錐的體積為

        19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

        由此可得,;

        由規(guī)律②可知,,

        ;

        又當(dāng)時(shí),,

        所以,,由條件是正整數(shù),故取

            綜上可得,符合條件.

        (2) 解法一:由條件,,可得

        ,

        ,

        ,

        因?yàn)?sub>,,所以當(dāng)時(shí),,

        ,即一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

        解法二:列表,用計(jì)算器可算得

        月份

        6

        7

        8

        9

        10

        11

        人數(shù)

        383

        463

        499

        482

        416

        319

        故一年中的7,8,9,10四個(gè)月是該地區(qū)的旅游“旺季”.

        20.解:(1)依條件得: 則無(wú)窮等比數(shù)列各項(xiàng)的和為:

             ;

          (2)解法一:設(shè)此子數(shù)列的首項(xiàng)為,公比為,由條件得:

        ,即    

         則 .

        所以,滿足條件的無(wú)窮等比子數(shù)列存在且唯一,它的首項(xiàng)、公比均為

        其通項(xiàng)公式為,.

        解法二:由條件,可設(shè)此子數(shù)列的首項(xiàng)為,公比為

        ………… ①

        又若,則對(duì)每一

        都有………… ②

        從①、②得;

        因而滿足條件的無(wú)窮等比子數(shù)列存在且唯一,此子數(shù)列是首項(xiàng)、公比均為無(wú)窮等比子

        數(shù)列,通項(xiàng)公式為,

        (3)以下給出若干解答供參考,評(píng)分方法參考本小題閱卷說(shuō)明:

        問題一:是否存在數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說(shuō)明理由.

        解:假設(shè)存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使它們的各項(xiàng)和之積為1。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

        因?yàn)榈仁阶筮吇驗(yàn)榕紨?shù),或?yàn)橐粋(gè)分?jǐn)?shù),而等式右邊為兩個(gè)奇數(shù)的乘積,還是一個(gè)奇數(shù)。故等式不可能成立。所以這樣的兩個(gè)子數(shù)列不存在。

        【以上解答屬于層級(jí)3,可得設(shè)計(jì)分4分,解答分6分】

        問題二:是否存在數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們各項(xiàng)的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說(shuō)明理由.

        解:假設(shè)存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使它們的各項(xiàng)和相等。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

        ………… ①

        ,則①,矛盾;若,則①

        ,矛盾;故必有,不妨設(shè),則

        ………… ②

        1當(dāng)時(shí),②,等式左邊是偶數(shù),

        右邊是奇數(shù),矛盾;

        2當(dāng)時(shí),②

        ,

        兩個(gè)等式的左、右端的奇偶性均矛盾;

        綜合可得,不存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得它們的各項(xiàng)和相等。

        【以上解答屬于層級(jí)4,可得設(shè)計(jì)分5分,解答分7分】

        問題三:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說(shuō)明理由.

        解:假設(shè)存在滿足條件的原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列。設(shè)這兩個(gè)子數(shù)列的首項(xiàng)、公比分別為,其中,則

        顯然當(dāng)時(shí),上述等式成立。例如取,得:

        第一個(gè)子數(shù)列:,各項(xiàng)和;第二個(gè)子數(shù)列:

        各項(xiàng)和,有,因而存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍。

        【以上解答屬層級(jí)3,可得設(shè)計(jì)分4分,解答分6分.若進(jìn)一步分析完備性,可提高一個(gè)層級(jí)評(píng)分】

        問題四:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說(shuō)明理由.解(略):存在。

        問題五:是否存在原數(shù)列的兩個(gè)不同的無(wú)窮等比子數(shù)列,使得其中一個(gè)數(shù)列的各項(xiàng)和等于另一個(gè)數(shù)列的各項(xiàng)和的倍?并說(shuō)明理由.解(略):不存在.

        【以上問題四、問題五等都屬于層級(jí)4的問題設(shè)計(jì),可得設(shè)計(jì)分5分。解答分最高7分】

         


        同步練習(xí)冊(cè)答案

        <font id="hgjhb"><td id="hgjhb"></td></font>

        <strike id="hgjhb"><label id="hgjhb"></label></strike>
          <tfoot id="hgjhb"></tfoot>