數學英語物理化學 生物地理
數學英語已回答習題未回答習題題目匯總試卷匯總
題目列表(包括答案和解析)
查看答案和解析>>
已知關于的不等式,其中。
⑴試求不等式的解集;
⑵對于不等式的解集,若滿足(其中為整數集)。試探究集合能否為有限集?若能,求出使得集合中元素個數最少的的所有取值,并用列舉法表示集合;若不能,請說明理由。
一、填空題:(5’×11=55’)
題號
1
2
3
4
5
6
答案
0
(1,2)
7
8
9
10
11
8.3
②、③
二、選擇題:(4’×4=16’)
12
13
14
15
A
C
B
20090116
三、解答題:(12’+14’+15’+16’+22’=79’)
16.解:由條件,可得,故左焦點的坐標為.
設為橢圓上的動點,由于橢圓方程為,故.
因為,所以
,
由二次函數性質可知,當時,取得最小值4.
所以,的模的最小值為2,此時點坐標為.
17.解:(1)當時,;
當且時,;
當時,;(不單獨分析時的情況不扣分)
當時,.
(2)由(1)知:當時,集合中的元素的個數無限;
當時,集合中的元素的個數有限,此時集合為有限集.
因為,當且僅當時取等號,
所以當時,集合的元素個數最少.
此時,故集合.
18.(本題滿分15分,第1小題6分,第2小題9分)
解:
(2)解:如圖所示.由,,則面.
所以,四棱錐的體積為
.
19.解:(1)根據三條規(guī)律,可知該函數為周期函數,且周期為12.
由此可得,;
由規(guī)律②可知,,
;
又當時,,
所以,,由條件是正整數,故取.
綜上可得,符合條件.
(2) 解法一:由條件,,可得
,
,.
因為,,所以當時,,
故,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.
解法二:列表,用計算器可算得
月份
…
人數
383
463
499
482
416
319
故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.
20.解:(1)依條件得: 則無窮等比數列各項的和為:
(2)解法一:設此子數列的首項為,公比為,由條件得:,
則,即
而 則 .
所以,滿足條件的無窮等比子數列存在且唯一,它的首項、公比均為,
其通項公式為,.
解法二:由條件,可設此子數列的首項為,公比為.
由………… ①
又若,則對每一
都有………… ②
從①、②得;
則;
因而滿足條件的無窮等比子數列存在且唯一,此子數列是首項、公比均為無窮等比子
數列,通項公式為,.
(3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:
問題一:是否存在數列的兩個不同的無窮等比子數列,使得它們各項的和互為倒數?若存在,求出所有滿足條件的子數列;若不存在,說明理由.
解:假設存在原數列的兩個不同的無窮等比子數列,使它們的各項和之積為1。設這兩個子數列的首項、公比分別為和,其中且或,則
因為等式左邊或為偶數,或為一個分數,而等式右邊為兩個奇數的乘積,還是一個奇數。故等式不可能成立。所以這樣的兩個子數列不存在。
【以上解答屬于層級3,可得設計分4分,解答分6分】
問題二:是否存在數列的兩個不同的無窮等比子數列,使得它們各項的和相等?若存在,求出所有滿足條件的子數列;若不存在,說明理由.
解:假設存在原數列的兩個不同的無窮等比子數列,使它們的各項和相等。設這兩個子數列的首項、公比分別為和,其中且或,則
………… ①
若且,則①,矛盾;若且,則①
,矛盾;故必有且,不妨設,則
①………… ②
1當時,②,等式左邊是偶數,
右邊是奇數,矛盾;
2當時,②
或
兩個等式的左、右端的奇偶性均矛盾;
綜合可得,不存在原數列的兩個不同的無窮等比子數列,使得它們的各項和相等。
【以上解答屬于層級4,可得設計分5分,解答分7分】
問題三:是否存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍?若存在,求出所有滿足條件的子數列;若不存在,說明理由.
解:假設存在滿足條件的原數列的兩個不同的無窮等比子數列。設這兩個子數列的首項、公比分別為和,其中且或,則
顯然當時,上述等式成立。例如取,,得:
第一個子數列:,各項和;第二個子數列:,
各項和,有,因而存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍。
【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】
問題四:是否存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍?并說明理由.解(略):存在。
問題五:是否存在原數列的兩個不同的無窮等比子數列,使得其中一個數列的各項和等于另一個數列的各項和的倍?并說明理由.解(略):不存在.
【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】
百度致信 - 練習冊列表 - 試題列表
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)