解法一:(Ⅰ)取AC中點D.連結SD.DB.∵SA=SC.AB=BC.∴AC⊥SD且AC⊥BD. 查看更多

 

題目列表(包括答案和解析)

如圖,平面ABDE⊥平面ABC,ACBC,AC=BC=4,四邊形ABDE是直角梯形,BDAE,BDBA,AE=2BD=4,O、M分別為CE、AB的中點.

(Ⅰ)證明:OD//平面ABC;

(Ⅱ)能否在EM上找一點N,使得ON⊥平面ABDE?若能,請指出點N的位置,并加以證明;若不能,請說明理由.

【解析】第一問:取AC中點F,連結OF、FB.∵F是AC的中點,O為CE的中點,

∴OF∥EA且OF=且BD=

∴OF∥DB,OF=DB,

∴四邊形BDOF是平行四邊形。

∴OD∥FB

第二問中,當N是EM中點時,ON⊥平面ABDE。           ………7分

證明:取EM中點N,連結ON、CM, AC=BC,M為AB中點,∴CM⊥AB,

又∵面ABDE⊥面ABC,面ABDE面ABC=AB,CM面ABC,

∴CM⊥面ABDE,∵N是EM中點,O為CE中點,∴ON∥CM,

∴ON⊥平面ABDE。

 

查看答案和解析>>

如圖,三棱錐中,側面底面, ,且,.(Ⅰ)求證:平面;

(Ⅱ)若為側棱PB的中點,求直線AE與底面所成角的正弦值.

【解析】第一問中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二問中結合取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

 (Ⅰ) 證明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如圖, 取AC中點O,連接PO、OB,并取OB中點H,連接AH、EH,

因為PA=PC,所以PO⊥AC,同(Ⅰ)易證平面ABC,

又EH//PO,所以EH平面ABC ,

為直線AE與底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已證平面PBC,所以,即,

,

于是

所以直線AE與底面ABC 所成角的正弦值為

 

查看答案和解析>>

過△ABC的重心作一直線分別交AB,AC 于D,E,若 ,(),則的值為(  )

A  4  B  3   C    2    D   1

查看答案和解析>>

甲 乙兩個玩一轉盤游戲(轉盤如圖1“C為弧AB的中點”)指針指向圓弧AC時甲勝,指向圓弧BC時乙勝.后來轉盤損壞如圖2,甲提議連AD取AD中點E 若指針指向線段AE甲勝 指向線段ED乙勝.然后繼續(xù)游戲,你覺得此時游戲還有公平性嗎?
不公平
不公平
,因為p(甲)
<(不給中間分)
<(不給中間分)
p(乙)(填<,>,=)

查看答案和解析>>

(12分)

學校欲在操場邊上一直角三角形空地ABC上種植草坪,并需鋪設一根水管EF(E在AC上,F(xiàn)在AB上)用于灌溉,已知∠A=30°,∠C=90°,BC=2a,D是BC中點,為確保灌溉的效果,鋪設時要求∠EDF=60°,F(xiàn)有兩種方案可供參考。甲方案:取AC的中點E鋪設水管;乙方案:取AB的中點F鋪設水管。

(1)比較甲乙兩種方案,哪一種方案更合理(EF的長較小的合理);

(2)學校研究小組通過研究得出:無論D在BC的什么位置,總存在E,F(xiàn)兩點,使△DEF為正三角形。試證明該結論的正確性。

 

 

查看答案和解析>>


同步練習冊答案