則數(shù)列{}為“調(diào)和數(shù)列 .已知數(shù)列{}為“調(diào)和數(shù)列 . 查看更多

 

題目列表(包括答案和解析)

已知數(shù)列單調(diào)遞增,且各項(xiàng)非負(fù),對于正整數(shù),若任意的),仍是中的項(xiàng),則稱數(shù)列為“項(xiàng)可減數(shù)列”.

(1)已知數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列是“項(xiàng)可減數(shù)

列”,試確定的最大值;

(2)求證:若數(shù)列是“項(xiàng)可減數(shù)列”,則其前項(xiàng)的和;

(3)已知是各項(xiàng)非負(fù)的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,

并說明理由.

 

查看答案和解析>>

已知數(shù)列{xn}的前n項(xiàng)和為Sn滿足數(shù)學(xué)公式數(shù)學(xué)公式
(I)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結(jié)論;
(Ⅱ)對于數(shù)列{un}若存在常數(shù)M>0,對任意的n∈N+,恒有|un+1-un|+|un-un-1|+-+|u2-u1|≤M則稱數(shù)列{Un}為B-數(shù)列.問數(shù)列{xn}是B-數(shù)列嗎?并證明你的結(jié)論.

查看答案和解析>>

已知數(shù)列{an}單調(diào)遞增,且各項(xiàng)非負(fù),對于正整數(shù)K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項(xiàng),則稱數(shù)列{an}為“K項(xiàng)可減數(shù)列”.
(1)已知數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列{an-2}是“K項(xiàng)可減數(shù)列”,試確定K的最大值;
(2)求證:若數(shù)列{an}是“K項(xiàng)可減數(shù)列”,則其前n項(xiàng)的和數(shù)學(xué)公式
(3)已知{an}是各項(xiàng)非負(fù)的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

已知數(shù)列{an}單調(diào)遞增,且各項(xiàng)非負(fù),對于正整數(shù)K,若任意的i,j(1≤i≤j≤K),aj-ai仍是{an}中的項(xiàng),則稱數(shù)列{an}為“K項(xiàng)可減數(shù)列”.
(1)已知數(shù)列{an}是首項(xiàng)為2,公比為2的等比數(shù)列,且數(shù)列{an-2}是“K項(xiàng)可減數(shù)列”,試確定K的最大值;
(2)求證:若數(shù)列{an}是“K項(xiàng)可減數(shù)列”,則其前n項(xiàng)的和Sn=
n
2
an(n=1,2,…,K)
;
(3)已知{an}是各項(xiàng)非負(fù)的遞增數(shù)列,寫出(2)的逆命題,判斷該逆命題的真假,并說明理由.

查看答案和解析>>

已知數(shù)列的前n項(xiàng)和為滿足,

猜想數(shù)列的單調(diào)性,并證明你的結(jié)論;

(Ⅱ) 對于數(shù)列若存在常數(shù)M>0,對任意的,恒有 ,  則稱數(shù)列為B-數(shù)列。問數(shù)列是B-數(shù)列嗎?  并證明你的結(jié)論。

查看答案和解析>>

 

1-15CBDAC CDB   0   5   100  [3.9]   垂直  2或8  

16.⑴ ∵ ,……………………………… 2分

又∵ ,∴ 為斜三角形,

,∴.   ……………………………………………………………… 4分

,∴ .  …………………………………………………… 6分

⑵∵,∴ …10分

,∵,∴.…………………………………12分

 

17.(Ⅰ)從4名運(yùn)動(dòng)員中任取兩名,其靶位號與參賽號相同,有種方法,另2名運(yùn)動(dòng)員靶位號與參賽號均不相同的方法有1種,所以恰有一名運(yùn)動(dòng)員所抽靶位號與參賽號相同的概率為  ……………………………4

   (Ⅱ)①由表可知,兩人各射擊一次,都未擊中9環(huán)的概率為P=(1-0.3)(1-0.32)=0.476至少有一人命中9環(huán)的概率為p=1-0.476=0.524………………………8分

   

所以2號射箭運(yùn)動(dòng)員的射箭水平高…………………………………12分

 

18.證明:(Ⅰ)在梯形ABCD中,∵

∴四邊形ABCD是等腰梯形,

,∴

又∵平面平面ABCD,交線為AC,∴平面ACFE…………………6分

(Ⅱ)取EF中點(diǎn)G,EB中點(diǎn)H,連結(jié)DG、GH、DH,∵DE=DF,∴平面ACFE,∴  又∵,∴又∵,∴

是二面角B―EF―D的平面角.

在△BDE中

,∴在△DGH中,

由余弦定理得即二面角B―EF―D的大小余弦值...14分

 

 

19.解:(1)由橢圓定義可得,可得

  

,,解得   (4分)

(或解:以為直徑的圓必與橢圓有交點(diǎn),即

   (2)由,得

解得    

    此時(shí)

當(dāng)且僅當(dāng)m=2時(shí), (9分)

(3)由

設(shè)A,B兩點(diǎn)的坐標(biāo)分別為,中點(diǎn)Q的坐標(biāo)為

,兩式相減得

     ①

且在橢圓內(nèi)的部分

又由可知

    ②

①②兩式聯(lián)立可求得點(diǎn)Q的坐標(biāo)為

點(diǎn)Q必在橢圓內(nèi)

 又             (14分)

 

20.解:(1)

……………………………4分

(2)

由此猜測

下面證明:當(dāng)時(shí),由

當(dāng)

當(dāng)時(shí),

當(dāng)時(shí),

總之在(-                (10分)

所以當(dāng)時(shí),在(-1,0)上有唯一實(shí)數(shù)解,從而

上有唯一實(shí)數(shù)解。

綜上可知,.                 (14分)

 

21.解:(1)令

   令

   由①②得           (6分)

  (2)由(1)可得

n     

   

      ………………14

 

 


同步練習(xí)冊答案